Concepts from previous lectures

- sampling distributions
 - sampling error
 - standard error of the mean
 - degrees-of-freedom
- Null and alternative/research hypotheses (H0 vs H1)

Tapping test (single observation)

- tapping test from Chapter 8
- tapping rate can be used as an indicator for neurological damage
 - 10 s tapping test in normal pop: mean = 59; sd = 7
 - tapping rate is slower in Alzheimer’s patients (and other clinical populations)
 - measured rate for 1 subject = 45 (per 10 s trial)
- is this case unusual?
General Strategy
reject H0 if z exceeds critical values of z

Tapping test (single observation)
• measured rate for 1 case = 45 (per 10 s trial)
• is this case unusual?
 - H0: μ ≥ 59 (case was not drawn from Alzheimer’s population)
 - H1: μ < 59 (case was drawn Alzheimer’s population)
• significance level of .05 (one-tailed)
 - critical value of z = -1.645; p(z ≤ -1.645 | H0) = .05
• observed z = (45-59)/7 = -2.0
• observed z < critical z; p(z ≤ -2 | H0) = 0.023
 - reject H0 in favour of H1

Tapping test (group mean)
• Instead of single case study, consider a situation in which we measure the mean tapping rate of 5 individuals
 - administer genetic test to screen for early-onset Alzheimer’s disease to many individuals
 - identify 5 individuals who might be at risk
 - also administer tapping test to these individuals
• Question: is tapping rate for this group unusually low?
 - N=5; mean = 54.2; standard deviation = 5
 - Population: μ = 59, σ = 7
 - Sample (N=5): mean = 54.2; standard deviation = 5
 - Question: is tapping rate for this group unusually low?
 - H0: μ ≥ 59 (sample was not drawn from Alzheimer’s population)
 - H1: μ < 59 (sample was drawn Alzheimer’s population)
• Sampling distribution of mean assuming H0 is true:
 - N(μ,σ²) = N(59, 7²/5) = N(μ=59, σ²=9.8) [σ = sqrt(9.8) = 3.13]
 - z score for our mean: z = (54.2-59)/3.13 = -1.533
• Significance level = .05 (one-tailed); Critical z = -1.645; p(z ≤ -1.645 | H0) = 0.05
• Observed z (-1.533) > Critical z (-1.645)
 - p(z ≤ -1.533 | H0) = 0.063
 - fail to reject H0
Testing Hypotheses with Unknown Population Variance

Tapping test (group mean)
- Population: $\mu = 59, \sigma = ?$
- Sample (N=5): mean = 54.2; standard deviation = 5
- Question: is tapping rate for this group unusually low?
 - H_0: $\mu \geq 59$ (sample was not drawn from Alzheimer’s population)
 - H_1: $\mu < 59$ (sample was drawn Alzheimer’s population)
- Sampling distribution of mean assuming H_0 is true:
 - $N(\mu, \sigma^2) = N(59, 5/5) = N(\mu=59, \sigma^2=5)$ ($\sigma = \sqrt{5} = 2.23$)
 - z score for our mean: $z = (54.2-59) / 2.23 = -2.152$
 - N.B. This z is based on ESTIMATED standard deviation
 - significance level = .05 (one-tailed); Critical $z = -1.645$; $p(z \leq -1.645 | H_0) = 0.05$
 - “Estimated z” (-2.152) < Critical z (-1.645)
 - $p(z < -2.152 | H_0) = 0.0157$
 - reject H_0 in favour of H_1

Effect of using estimate of σ
- z is defined with KNOWN population μ and σ
- only source of variation in z is sampling error of mean
- using estimate of σ introduces another source of variation in z
 - z score depends on group mean AND group standard deviation
- does this affect distribution of z?

Sampling Distribution of Standard Deviation
- standard deviation s has a sampling distribution
- mean of $s = \sigma$
 - s is unbiased estimate of σ
 - but distribution is skewed
 - median(s) $< \text{mean(s)}$
 - so $s < \sigma$ more than 50% of time
 - what does this mean for z?
Under- and over-estimates of σ

\[
\begin{align*}
z &= \frac{\bar{X} - \mu \bar{X}}{\sigma \bar{X}} \\
\hat{z} &= \frac{\bar{X} - \mu \bar{X}}{\hat{\sigma} \bar{X}}
\end{align*}
\]

1) if $(\hat{\sigma} \bar{X} \geq \sigma \bar{X})$ then $(\hat{z} \leq z)$

2) if $(\hat{\sigma} \bar{X} < \sigma \bar{X})$ then $(\hat{z} > z)$

Skewed sampling distribution of z means that “2” happens more than 50% of the time

Effect of inflating z score

- Calculating z with estimated σ inflates z scores
- Extreme \hat{z} values occur more frequently than expected
- What effect does this have on our evaluation of H0?

Distribution of estimated-z is not normal

- Simulation = 10,000 samples
 - $n=5$, $\sigma=7$, $\mu=59$
 - Calculate z for each sample
- Distribution of z has more outliers than expected
- $p(z < -1.645) = 0.092$, not 0.05
 - Type I error rate is higher than expected (.092 vs .05)

William Gosset and Student’s t

- Under the pseudonym, Student, William Gosset investigated effects of estimating σ on z test
- Noted that estimated z was not distributed normally
- Identified the correct distribution
 - Student’s t distribution

t distribution

- unimodal
- symmetrical around zero
- has 1 parameter:
 - degrees of freedom (df)
- df alters kurtosis
 - lower df associated with narrower middle portion & heavier tails
- t approximately normal for $df \geq 35$

what are “degrees-of-freedom”?

degrees of freedom

- consider a set of $n=4$ numbers:
 - guess the value of each number:
 - 2
 - 0
 - 8
 - 10
 - hard to guess correctly because each number can be any value
 - each number is free to vary

degrees of freedom

- consider a set of $n=4$ numbers, whose total = 20
 - guess the value of each number:
 - 4
 - 1
 - 10
 - 5
 - first 3 numbers can be any value
 - but value of 4th is determined by first 3 (and the total value of 20)
 - 4th value is not free to vary
 - given the total, we say the set of $n=4$ values has $n-1=3$ degrees of freedom
degrees of freedom

- consider a set of n=4 numbers, whose mean = 5
 - guess the value of each number:
 - 5
 - 8
 - 6
 - 1
- first 3 numbers can be any value
 - but value of 4th is determined by first 3 (and the mean value of 5)
 - 4th value is not free to vary
- given the mean, we say the set of n=4 values has n-1=3 degrees of freedom

Degrees-of-freedom (df)

- Degrees of freedom show up in many different places in statistics
- when calculating \(t \) for 1 sample
 - \(df = \) sample size minus one = n-1
 - true because \(t \) is based on sample variance
 - which depends on sample mean
 - given the mean, only (n-1) sample values are free to vary
 - the nth-value is determined by the other n-1 values

Distribution of estimated-z is not normal

- Simulation = 10,000 samples
 - tapping test parameters:
 - n=5, \(\sigma=7, \mu=59 \)
 - calculate estimated-z for each sample using sample standard deviation
 - Distribution of estimated-z has more outliers than expected
- \(p(“z” < -1.645) = 0.092, \) not 0.05
 - Type I error rate is higher than expected (.092 vs .05)
Back to hypothesis testing

- when \(\sigma \) is NOT known
 - estimated \(z \) is inflated
 - standardized score is distributed as \(t \), not \(z \)
 - using \(z \) causes Type I error rate to be larger than the expected value

- solution: use critical values of \(t \), not \(z \)

Our tapping test sample: \(n=5 \), \(df=n-1=4 \)
- significance level = .05 (one-tailed); critical \(t(df=4) = -2.13 \)
- \(p(t \leq -2.13 \mid H_0) = .05 \)
Back to hypothesis testing

- Our tapping test sample: \(n=5, \ df=n-1=4 \)
 - significance level = .05 (1-tailed); critical \(t(df=4) = -2.13 \)
 - \(p(t \leq -2.13 | H_0) = .05 \)

- Tapping example using \(z \) (reminder of key results):
 - significance level = .05 (1-tailed); Critical \(z = -1.645 \); \(p(z \leq -1.645 | H_0) = 0.05 \)
 - Observed Estimated-\(z \) (-2.152) < Critical \(z \) (-1.645); reject \(H_0 \) in favour of \(H_1 \)
 - \(p(z \leq -2.152 | H_0) = 0.0157 \); reject \(H_0 \) in favour of \(H_1 \)

- Tapping test example using \(t \):
 - Observed \(t \) = \([54.2 - 59] / 2.23 = -2.152; \(p(t \leq -2.152 | H_0) = 0.049 \)
 - Observed \(t \) (-2.152) < Critical \(t \) (-2.13) (close!)
 - still reject \(H_0 \) in favour of \(H_1 \)

two-sided t test (tapping test example)

- Null & Research Hypotheses:
 - \(H_0: \mu=59 \) (sample drawn from healthy population)
 - \(H_1: \mu\neq59 \) (sample not drawn from healthy population)
- \(\alpha = .05 \)
 - critical values of \(t = \pm 2.776 \) [df=4, 2-tailed, \(\alpha=.05 \)]
two-sided t test (tapping test example)

- Null & Research Hypotheses:
 - H0: μ=59 (sample drawn from healthy population)
 - H1: μ≠59 (sample not drawn from healthy population)
- alpha = .05
 - critical values of t = ± 2.776 (df=4, 2-tailed, alpha=.05)
 - given H0, p(t > 2.776) = .025 & p(t < -2.776) = .025
- sample: N=5, mean = 54.2, standard deviation = 5
 - following values are the same as for 1-tailed tests:
 - t = (54.2-59) / sqrt(5/5) = (54.2-59)/2.23 = –2.152
 - Observed t (-2.152) is not more extreme than either critical t value (±2.776)
 - fail to reject H0

effect of sample size (tapping test example)

- Null & Research Hypotheses:
 - H0: μ=59 (sample drawn from healthy population)
 - H1: μ≠59 (sample not drawn from healthy population)
- sample: N=30, mean = 54.2, standard deviation = 5
 - t = (54.2-59) / sqrt(5/30) = (54.2-59)/0.913 = –5.257
 - SD of sampling distribution decreases from sqrt(5/5) to sqrt(5/30)
 - so same values of μ & sample mean result in bigger t value
- alpha = .05 (df=n-1=29)
 - critical values of t = ± 2.04 [approximate; value for df=30 taken from Table 12.1]
 - given H0, p(t > 2.04) = .025 & p(t < -2.04) = .025
 - Observed t (–5.257) is more extreme than either critical t value (±2.04)
 - reject H0 in favour of H1

Effect of Sample Size on SEM

\[\hat{\sigma}_X = \frac{s}{\sqrt{N}} \]

Factors affecting t test

- observed difference: (sample mean - μ)
- sample standard deviation (s)
- sample size (N)
 - p-value depends on N
 - reason for calculating effect size
 - less dependent on N
- significance level (α)
- one- vs. two-tailed test
1-sample t tests (summary)

• z tests are used when population variance is known
• estimating population variance from sample variance inflates z
 - estimated-z is not distributed as standardized normal variable
 ▶ extreme values occur more frequently than expected
 - causes our z test to have a Type I error rate that is higher than the expected value (i.e., alpha)
• t tests correct for this inflation of Type I error rate
 - “estimated-z” follows Student’s t distribution
 - logic of t test is the same as z test
 - primary difference is we compare observed “t” to critical value of “t”, not z