HUMBEHV 3ST3

Linear Regression

Prof. Patrick Bennett

Correlation vs. Regression

• Correlation: a measure of the strength & direction of linear association
• Linear Regression: calculates best-fitting line
 - predicts average change in Y associated with change in X

What is the equation for the line shown below?

\[\hat{Y} = bX + a \]

• \(a \) (intercept) = ?
• \(b \) (slope of line) = ?

\[a = 2 \]
\[b = \frac{\Delta Y}{\Delta X} = \frac{2}{4} = 0.5 \]

\(\hat{Y} = bX + a \)

\(\hat{Y} \): predicted value of Y
\(b \): slope of regression line; average change in Y with 1-unit change in X
\(a \): intercept of regression line (\(\hat{Y} \) when X=0)

An increase of 1 cm of Petal Width is associated with an average increase of 0.888 cm in Sepal Length.
A Petal Width of zero is associated with a Sepal Length of 4.78 cm. (Is Petal Width of zero meaningful?)
Regression slope ≠ correlation strength
Pearson r is NOT a good measure of regression slope

- 2 methods of test preparation
- For both methods:
 - test mark (Y) is correlated with study time (X)
 - correlations are approx equal & same sign
 - linear X,Y association very strong
- Regression can help to answer such questions as:
 - Which method yields a greater increase in Marks per hour of study time?
 - How long should you study to get a predicted mark of 85?

Where does the regression line come from?

Example: Relation between mental health & stress
Permutation test on (Stress, Symptom) data

- Dashed lines form 99.9% interval:
 - 99.9% of simulated r values fall inside interval
 - 0.1% (p=0.001) of simulated r values fall outside interval
- Use interval to define “unusual” r values
- Observed correlation r=0.506 falls outside interval
 - permutation test suggests 0.506 is a very unusual sample r when population r is zero
- We may decide to reject null hypothesis that population r=0 in favour of alternative hypothesis population r≠0
 - Our decision might be wrong!
- We state conclusion thusly:
 - the correlation was significant (r=.506, p<.001)

N.B. This permutation test illustrates the logic of null hypothesis testing. In fact, other statistical methods provide better tests of the null hypothesis r=0 by estimating the interval boundaries more accurately. But the logic behind those methods is similar to that described here.

Least-squares regression line

- find values of slope & intercept that minimize sum of squared residuals
 - this criterion is reasonable because it minimizes differences between observed and predicted values
- linear regression provides values of regression coefficients for best-fitting line
 - best-fitting line minimizes the sum of squared residuals

What is “best” fitting line?

- residual = difference between observed and predicted value of Y
 \[e_i = Y_i - \hat{Y}_i \]
- “best” fit: line that minimizes the sum of squared residuals
 \[\sum e_i^2 = \sum (Y_i - \hat{Y}_i)^2 \]
- “least-squares” fit

\[\hat{Y} = bX + a \]

Y-hat: predicted value of Y
- \(b = \text{slope} \) of regression line
 - average change in Y associated with a 1-unit change in X
- \(a = \text{intercept} \) of regression line
 - value of Y-hat when \(X=0 \)

An increase of 1 on the Stress measure is associated with an increase of 0.78 (on average) on the Symptom measure

A Stress score of zero is associated with a Symptom score of 73.89.
Regression Table

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| 73.88 | 3.2714 | 22.587 | < 2e-16 *** |
| Stress | 0.78 | 0.1303 | 6.012 | 2.69e-08 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Standard Error of Estimate: 17.56 on 105 degrees of freedom

Multiple R-squared: 0.2561, Adjusted R-squared: 0.249

F-statistic: 36.14 on 1 and 105 DF, p-value: 2.692e-08

Standard Error of Estimate = Standard Deviation of Y around the regression line

Standard Error of Estimate = Standard Deviation of Residuals

Variance(Residuals) = (Standard Error of Estimate)^2

A measure of uncertainty about the predicted value of Y

```r
> lm.stress <- lm(Symptoms~Stress,data=tab10.2.dat)  # calculate regression line
> var(residuals(lm.stress))  # variance of residuals
[1] 305.5288
> sqrt(var(residuals(lm.stress)))  # standard deviation of residuals
[1] 17.47938
```

Standard Error of Coefficients

Coefficients estimated with high or low precision

Effect of Varying Slope on Goodness of Fit

- In other cases, varying the slope has a large effect on goodness of fit, so a very small range of slopes fit the data well... leading to a small standard error.
- In some cases, varying the slope has relatively small effects on goodness of fit, so a range of slopes fit the data nearly equally well... leading to a large standard error.

Multiple R-squared: 0.2561, Adjusted R-squared: 0.249

F-statistic: 36.14 on 1 and 105 DF, p-value: 2.692e-08

Multiple R-squared: proportion of the variance of Y that is "accounted for" by regression
- regression line shows how variation in X accounts for variation in Y
- if fit is very good, then variation in X should account for most of variation in Y
- For linear regression, Multiple R^2 equals the squared correlation (r^2 = 0.506^2 = 0.256)

\[
R^2 = \frac{\text{VAR}(Y) - \text{VAR}(Y - \hat{Y})}{\text{VAR}(Y)} = \frac{\text{VAR}(Y) - \text{VAR(Residuals)}}{\text{VAR}(Y)}
\]
Var(residuals) < Var(Scores)

Var(Symptoms) = 410.7; SD(Symptoms) = 20.26
Var(Residuals) = 305.5; SD(Residuals) = 17.48

\[R^2 = \left(\frac{410.7 - 305.5}{410.7} \right) = 0.256 \]

\[r = \sqrt{R^2} = \sqrt{0.256} = 0.506 \]

Our regression model accounts for 25% of variance of Symptoms scores

Standardized Scores

- Any set of numbers can be standardized:
 - if \(z = \frac{Y - \text{mean}(Y)}{\text{SD}(Y)} \), then mean(z)=zero & SD(z) = 1
 - transformed scores like \(z \) often called standard scores
- Standard scores are unit-less:
 - represent # of SDs above/below the mean
- Regression on standardized scores:
 - correlation, \(r \), is unchanged
 - but values of regression coefficients are different
 - slope coefficient equals \(r \)

Regression Table

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 73.88 | 3.2714 | 22.587 | < 2e-16 *** |
| Stress | 0.78 | 0.1303 | 6.012 | 2.69e-08 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Standard Error of Estimate: 17.56 on 105 degrees of freedom
Multiple R-squared: 0.2561, Adjusted R-squared: 0.249

F-statistic: 36.14 on 1 and 105 DF, p-value: 2.692e-08

F-statistic evaluates Null Hypothesis Y & X are not associated in population
p-value is probability of obtaining \(R^2 \) at least as large as ours when Null Hypothesis is true
For linear regression: if \(r \) is statistically significant, then F-statistic and regression coefficient for Stress (X) will be statistically significant, too

Regression table for raw scores

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 0.00 | 0.08378 | 0.000 | 1 |
| z.stress | 0.506 | 0.08417 | 6.012 | 2.69e-08 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8666 on 105 degrees of freedom
Multiple R-squared: 0.2561, Adjusted R-squared: 0.249
F-statistic: 36.14 on 1 and 105 DF, p-value: 2.692e-08

Regression table for standardized scores

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| (Intercept) | 0.0 | 0.08378 | 0.000 | 1 |
| z.stress | 0.506 | 0.08417 | 6.012 | 2.69e-08 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8666 on 105 degrees of freedom
Multiple R-squared: 0.2561, Adjusted R-squared: 0.249
F-statistic: 36.14 on 1 and 105 DF, p-value: 2.692e-08

• \(R^2 \) is unchanged
• But values of regression coefficients differ
• Note value of z.stress coefficient:
 - Standardized coefficient referred to as “Beta”
 - Beta = \(\beta = r = 0.506 \)
Regression On **Standard Scores**

Standard Scores (Symptoms vs. Stress)

![Graph showing regression line with slope Beta = r = 0.506](image)

Quantifying (X,Y) Linear Association

- $R^2 = r^2$ equals the proportion of Y variance “accounted for” by regression
- $R = \text{correlation ($r$) between } Y \text{ and } \hat{Y} \text{ (i.e., predicted value of } Y)$
- $b = \text{regression slope coefficient}$
- change in Y associated with 1-unit change in X
- **Beta (β):**
 - let Z_Y and Z_X represent standardized scores of Y & X
 - Beta (β) = number of SDs of Z_Y associated with 1 SD change in Z_X
 - useful when comparing coefficients for variables with different units and/or variances

Multiple Regression: A Generalization of Linear Regression

- Linear Regression can be generalized to:
 - cases that use more than 1 predictor variable
 - accounting for curvilinear relations between Y and predictors

Multiple Regression

- Dotted line fit by Linear Regression
- Solid lines fit by **Multiple Regression**
 - this multiple regression analysis includes Dosage and Gender
Multiple Regression: extension to curvilinear association

- **Not just linear fits!**
- Curvilinear associations can be estimated & evaluated with Multiple Regression
- **two predictor variables:** X & X^2

| Coefficients: | Estimate | Std. Error | t value | Pr(>|t|) |
|---------------|----------|------------|---------|----------|
| (Intercept) | 2.967 | 0.092 | 32.39 | <2e-16 *** |
| x | 0.513 | 0.037 | 13.69 | 2.82e-16 *** |
| x^2 | 0.101 | 0.013 | 7.86 | 1.72e-09 *** |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4124 on 38 degrees of freedom
Multiple R-squared: 0.8349, Adjusted R-squared: 0.8262
F-statistic: 96.06 on 2 and 38 DF, p-value: 1.375e-15

Comments on Multiple Regression

- Linear Regression can be **generalized to:**
 - more than 1 predictor variable
 - curvilinear relations between Y and regression equation
- Like Linear Regression, Multiple Regression uses **Least-Squares:**
 - finds coefficients that minimize sum of squared residuals
- R: still represents correlation between Y and predicted-Y values
- R^2: still is the proportion of Y variance accounted for by predictor variables
- regression coefficients represent the change in Y (on average) associated with 1-unit change in one predictor variable **when all other predictors are held constant**

Linear Regression Summary

- Least-squares criterion to find best-fitting line
 - line defined by intercept & slope coefficients
- Regression slope ≠ Correlation
- Regression, like r, is sensitive to extreme (high-leverage) data points
- $R^2 =$ proportion of Y variance accounted for by regression
- **Beta:** slope coefficient for regression on **standardized scores**
 - Beta = r
- Multiple Regression is a generalization of Linear Regression
 - can include multiple predictors
 - can estimate curvilinear association btwn Y & predictor variables