Tapping test (single observation)

- tapping test from Chapter 8
- tapping rate can be used as an indicator for neurological damage
 - 10 s tapping test in normal pop: mean = 59; sd = 7
 - tapping rate is slower in Alzheimer’s patients (& other clinical populations)
 - measured rate for 1 subject = 45 (per 10 s trial)
- Question: Is this subject drawn from typical or Alzheimer population?
- Will use null hypothesis significance testing to answer this question...
 - What null (H0) & alternative (H1) hypotheses should we use?

General Strategy

reject H0 if z exceeds critical values of z
Tapping test (single observation)

- measured rate for 1 case = 45 (per 10 s trial)
- is this case unusual?
 - H0: μ ≥ 59 (case was not drawn from Alzheimer’s population)
 - H1: μ < 59 (case was drawn Alzheimer’s population)
- significance level of .05 (one-tailed)
 - critical value of z = -1.645; p(z ≤ -1.645 | H0) = .05
- observed z = (45-59)/7 = -2.0
- observed z < critical z; p(z ≤ -2 | H0) = 0.023
 - reject H0 in favour of H1

Tapping test (group mean)

- Instead of single case study, consider a situation in which we measure the mean tapping rate of 5 individuals
 - administer genetic test to screen for early-onset Alzheimer’s disease to many individuals
 - identify 5 individuals who might be at risk
 - also administer tapping test to these individuals
- Question: is tapping rate for this group unusually low?
 - N=5; mean = 54.2; standard deviation = 6

Population: μ = 59, σ = 7
Sample (N=5): mean = 54.2; standard deviation = 6
Question: is tapping rate for this group unusually low?
 - H0: μ ≥ 59 (sample was not drawn from Alzheimer’s population)
 - H1: μ < 59 (sample was drawn Alzheimer’s population)
Sampling distribution of mean assuming H0 is true:
 - N(μ,σ²) = N(59, 7²/5) = N(μ=59,σ²=9.8) [σ = sqrt(9.8) = 3.13]
 - z score for our mean: z = (54.2-59) / 3.13 = -1.533
 - significance level = .05 (one-tailed); Critical z = -1.645; p(z ≤ -1.645 | H0) = 0.05
 - Observed z (-1.533) > Critical z (-1.645)
 - p(z ≤ -1.533 | H0) = 0.063
 - fail to reject H0

Testing Hypotheses with Unknown Population Variance
Tapping test (group mean)

- Population: $\mu = 59$, $\sigma = ?$
- Sample (N=5): mean = 54.2; standard deviation = 6
- Question: Is tapping rate for this group unusually low?
 - H0: $\mu \geq 59$ (sample was not drawn from Alzheimer’s population)
 - H1: $\mu < 59$ (sample was drawn Alzheimer’s population)

Sampling distribution of mean assuming H0 is true:

- $N(\mu, \sigma^2) = N(59, 6^2/5) = N(\mu=59, \sigma^2=7.2)$ (where $\sigma = \sqrt{7.2} = 2.68$)
- z score for our mean: $z = (54.2-59) / 2.68 = -1.79$
- N.B. This “z” is based on ESTIMATED standard deviation
- Significance level = .05 (one-tailed); Critical $z = -1.645$; $p(z \leq -1.645 \mid H0) = 0.05$
- Estimated “z” (-1.79) < Critical z (-1.645)
- $p(z \leq -1.79 \mid H0) = 0.037$
- Reject H0 in favour of H1

Effect of using estimate of σ

- z is defined with KNOWN population μ and σ
- Only source of variation in z is sampling error of mean
- Using estimate of σ introduces another source of variation in z
 - Estimated z depends on group mean AND sample standard deviation
- How does this affect distribution of z?

Effect of using estimate of population variation

- William Gossett applied statistics to his work in the Guinness brewery
- Under the pseudonym, Student, he investigated effects of estimating σ on z test
 - Sample variance is unbiased estimate of population variance
 - But sample standard deviation is a biased estimate of population standard deviation
 - Sample SD underestimates population SD particularly for small sample sizes
- Discovered that using estimates of σ lead to more extreme values of z than predicted by statistical theory

Effect of inflating z score

- Calculating z with estimated σ inflates z scores
- Extreme \hat{z} values occur more frequently than expected when H0 is True
- What effect does this have on our evaluation of H0?

![Histogram of z scores with critical value]

Critical $z = -1.645$

$p(z \leq -1.645 \mid H0) = 0.05$
Effect of using estimate of population variation

• William Gossett applied statistics to his work in the Guinness brewery
• Under the pseudonym, Student, he investigated effects of estimating σ on z test
• Discovered that using estimates of σ lead to more “extreme” values of z than predicted by statistical theory
• Caused an increase in Type I errors
 - especially for small samples
• Devised a new test that corrected these errors
 - Student’s t test

William Sealy Gosset (aka Student)

t distribution

• unimodal
• symmetrical around zero
• has 1 parameter:
 - degrees of freedom (df)
• df alters kurtosis
 - lower df associated with narrower middle portion & heavier tails
• t approximately normal for $df \gtrapprox 35$

what are “degrees-of-freedom”?

degrees of freedom

• consider a set of n=4 numbers:
 - guess the value of each number:
 ‣ 2
 ‣ 0
 ‣ 8
 ‣ 10
 - hard to guess correctly because each number can be any value
 - each number is free to vary
degrees of freedom

• consider a set of n=4 numbers, whose total = 20
 - guess the value of each number:
 ‣ 4
 ‣ 1
 ‣ 10
 ‣ 5
 • first 3 numbers can be any value
 - but value of 4th is determined by first 3 (and the total value of 20)
 - 4th value is not free to vary
 • given the total, we say the set of n=4 values has n-1=3 degrees of freedom

degrees of freedom

• consider a set of n=4 numbers, whose mean = 5
 - guess the value of each number:
 ‣ 5
 ‣ 8
 ‣ 6
 ‣ 1
 • first 3 numbers can be any value
 - but value of 4th is determined by first 3 (and the mean value of 5)
 - 4th value is not free to vary
 • given the mean, we say the set of n=4 values has n-1=3 degrees of freedom

degrees of freedom

Essentially the term means the number of independent units of information in a sample relevant to the estimation of a parameter or calculation of a statistic.

— B.S. Everitt, The Cambridge Dictionary of Statistics

Degrees-of-freedom (df)

• Degrees of freedom show up in many different places in statistics
• when calculating t for 1 sample
 - df = sample size minus one = n-1
 - true because t is based on sample variance
 - which depends on sample mean
 - given the mean, only (n-1) sample values are free to vary
 ‣ the nth-value is determined by the other n-1 values

\[s^2 = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n - 1} \]
Back to hypothesis testing

When \(\sigma \) is NOT known
- estimated \(z \) is inflated
- our standardized score does not follow \(z \) distribution
- using “\(z \)” increases Type I error rate

However, standardized score DOES follow a \(t \) distribution
- Therefore, our estimated “\(z \)” actually is a \(t \) statistic
- and we use critical values of \(t \), not \(z \), to evaluate null hypothesis

Our tapping test sample: \(n=5 \), \(df=n-1=4 \)
- significance level = .05 (one-tailed)
- critical \(t \text{(df=4)} \) = -2.13
 - \(p(t \leq -2.13 \mid H_0) = .05 \)

Tapping example using \(z \) (reminder of key results):
- significance level = .05 (1-tailed); Critical \(z = -1.645 \); \(p(z \leq -1.645 \mid H_0) = 0.05 \)
- Observed Estimated “\(z \)” (-1.79) < Critical \(z \) (-1.645); reject \(H_0 \) in favour of \(H_1 \)
 - \(p(z \leq -1.79 \mid H_0) = 0.037 \); reject \(H_0 \) in favour of \(H_1 \)

\[t = \frac{\bar{X} - \mu}{\hat{\sigma}_X} \]
Back to hypothesis testing

• Our tapping test sample: n=5, df=n-1=4
 - significance level = .05 (1-tailed); critical t(df=4) = -2.13
 - p(t ≤ -2.13 | H0) = .05

• Tapping example using z (reminder of key results):
 - significance level = .05 (1-tailed); Critical z = -1.645; p(z ≤ -1.645 | H0) = .05
 - Observed Estimated "z" (-1.79) < Critical z (-1.645); reject H0 in favour of H1
 - p(z ≤ -1.79 | H0) = .037; reject H0 in favour of H1

• Tapping test example using t:
 - Observed t = (54.2-59) / 2.68 = -1.79; p(t ≤ -1.79 | H0) = .074
 - Observed t (-1.79) not less than Critical t (-2.13)
 - so, do NOT reject H0 in favour of H1

two-sided t test (tapping test example)

• Null & Research Hypotheses:
 - H0: µ=59 (sample drawn from healthy population)
 - H1: µ≠59 (sample not drawn from healthy population)
 - alpha = .05
 - critical values of t = ± 2.776 [df=4, 2-tailed, alpha=.05]

• Null & Research Hypotheses:
 - H0: µ=59 (sample drawn from healthy population)
 - H1: µ≠59 (sample not drawn from healthy population)
 - alpha = .05
 - critical values of t = ± 2.776 (df=4, 2-tailed, alpha=.05)
 - given H0, p(t > 2.776) = .025 & p(t < -2.776) = .025
 - sample: N=5, mean = 54.2, standard deviation = 6
 - following values are the same as for 1-tailed tests:
 - t = (54.2-59) / sqrt(6/5) = (54.2-59)/2.68 = -1.79
 - Observed t (-1.79) is not more extreme than either critical t value (±2.776)
 - fail to reject H0
effect of sample size (tapping test example)

- Null & Research Hypotheses:
 - H0: μ=59 (sample drawn from healthy population)
 - H1: μ≠59 (sample not drawn from healthy population)

- Sample: N=30, mean = 54.2, standard deviation = 6
 - t = (54.2-59) / sqrt(6^2/30) = (-4.4)
 - SD of sampling distribution decreases from sqrt(6^2/5) to sqrt(6^2/30)
 - same values of μ, sample mean, and sd result in bigger t value

- Alpha = .05 (df=n-1=29)
 - Critical values of t = ±2.04 (approximate; value for df=30 taken from Table 12.1)
 - Given H0: p(t < -2.04) = .025 & p(t > 2.04) = .025
 - p(t < -2.04 OR t > 2.04) | H0) = .05
 - Observed t (~4.0) is more extreme than either critical t value (~2.04)
 - reject H0 in favour of H1

Factors affecting t test

- observed difference between sample mean - μ (when H0 is true)
- sample standard deviation (s)
- sample size (N)
 - p-value depends on N
 - large N means smaller p values
- significance level (α)
- 1- vs. 2-tailed test

Paired-sample t test (regression to the mean)

- measure blood pressure (BP) in 1000 adults
- select 296 adults HBP > 95 mmHG
 - apply treatment
 - measure post-treatment BP
- compare pre- & post-treatment BP
 - t-test on paired samples
 - each subject gives 2 measures
 - do t test on difference scores

Treatment for Hypertension (High Blood Pressure)

- measure blood pressure (BP) in 1000 adults
- select 296 adults HBP > 95 mmHG
 - apply treatment
 - measure post-treatment BP
- compare pre- & post-treatment BP
 - t-test on paired samples
 - each subject gives 2 measures
 - do t test on difference scores
Treatment for Hypertension (High Blood Pressure)

- Difference: mean = -2.91, sd = 6.02, N = 296
 - H0: True Difference >= 0
 - H1: True Difference < 0
- critical value of t:
 - df = N-1 = 295 & alpha = .05
 - t.critical = -1.65
 - p(t ≤ -1.65 | H0) = 0.05
- observed value of t:
 - t = (-2.91 - 0)/sqrt(6.02^2/296) = -8.31
 - p(t ≤ -8.31 | H0) < 0.0001
 - reject H0 in favour of H1

Is reduction in HBP due to treatment?

What else might cause blood pressure to be lower in the 2nd (post-treatment) test?

- Placebo Effect?
- Increased familiarity, reduced anxiety on 2nd test
- How could we rule out these alternative explanations?
- One more possible explanation:
 - Regression to the Mean

Regression to the Mean

- Very tall parents tend to have shorter children
 - & very short parents tend to have taller children
- Students with very high scores on test 1 tend to have slightly lower scores on test 2
 - & students with very low scores on test 1 tend to have slightly higher scores on test 2
- extreme scores on 1st measurement tend to be closer to average on 2nd measurement
Regression to the Mean

Note that blood pressure experiment included only subjects with high BP

![Graph showing blood pressure distribution across baseline and post-treatment measurements.](#)

Regression to the Mean

Note that blood pressure experiment included only subjects with high BP

![Graphs illustrating pre- and post-treatment comparisons for different blood pressure categories.](#)

Regression to the Mean

Regression to the mean reflects probabilistic variation across measurements

![Scatter plots demonstrating regression to the mean even for random data.](#)

Is reduction in HBP due to treatment?

What else might cause blood pressure to be lower in the 2nd (post-treatment) test?

- Placebo Effect?
- Increased familiarity, reduced anxiety on 2nd test
- How could we rule out these alternative explanations?
- One more possible explanation:
 - Regression to the Mean
 - Selecting extreme high scores on test 1 means that we should expect a lower average on test 2 even if the drug/treatment has no effect!
 - one way to test this idea: include a no-treatment group

![Illustration of the placebo effect, explained by Brian Resnick, Vox, 2017](#)
1-sample t tests (summary)

• z tests used when population variance is known
 • estimating population variance from sample variance inflates “z”
 - estimated-z is not distributed as standardized normal variable
 ‣ extreme values occur more frequently than expected
 - “z” test has higher Type I error rate than expected
 • t tests used when population variance is estimated from sample
 - logic of t test is the same as z test
 - primary difference is we compare observed t to critical value of t, not z
 - corrects for inflation of Type I error rate
 - t test on paired samples is a t test on difference scores
 • Be cautious when interpreting results!
 - unusually low or high scores/means, or a difference between pre- & post-treatment scores, may occur for several (sometimes non-obvious) reasons!