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1-Way ANOVA

Cognitive development study

• Cognitive test administered to grades 1-5 

- 15 children per grade 

• average scores increase approx linearly 

- correlation between grade & Y︤︤ = 0.97 

• use ANOVA to evaluate group differences

Cognitive development study 
check constant variance assumption

> bartlett.test(score~grade,df3)
Bartlett test of homogeneity of variances
data:  score by grade
Bartlett's K-squared = 6.6227, df = 4, p-value = 0.1572

Do not reject null hypothesis that variances are equal



Cognitive development study 
check normality assumption

> shapiro.test(residuals(aov.01))
Shapiro-Wilk normality test
data:  residuals(aov.01)
W = 0.9871, p-value = 0.6482

> qqnorm(residuals(aov.01)) 
> qqline(residuals(aov.01))

Do not reject null hypothesis that residuals are Normal

Cognitive development study
> load(file=url('http://pnb.mcmaster.ca/bennett/psy710/datasets/contrasts.rda'))
> df3$grade <- factor(df3$grade,ordered=FALSE)
> options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!!

> aov.01 <- aov(score~grade,df3)
> anova(aov.01)
Analysis of Variance Table
Response: score
          Df  Sum Sq Mean Sq F value  Pr(>F)  
grade      4  1361.2  340.31  2.2578 0.07152 .
Residuals 70 10550.9  150.73                  

• the effect of grade was not significant 
• do not reject the null hypothesis of no difference among group means

Cognitive development study

> library(effectsize)
> cohens_f(aov.01)
# Effect Size for ANOVA
Parameter | Cohen's f |      95% CI
grade     |      0.36 | [0.00, Inf]

> omega_squared(aov.01)
# Effect Size for ANOVA
Parameter | Omega2 |       95% CI
grade     |   0.06 | [0.00, 1.00]

Note that 1-sided 95% CIs for effect size & association strength include zero

Cohen’s f Omega-
squared

small 0.1 0.01

medium 0.25 0.06

large 0.4 0.14

Cognitive development study 
estimate power assuming medium effect size (f = 0.25)

> library(pwr)
> pwr.anova.test(k=5,n=15,
+                        f=0.25,sig.level=.05,
+                        power=NULL)
Balanced 1-way anova power calculation 
              k = 5
              n = 15
              f = 0.36
      sig.level = 0.05
          power = 0.35
NOTE: n is number in each group



Cognitive development study 
estimate power assuming f = 0.36

> library(pwr)
> pwr.anova.test(k=5,n=15,
+                        f=0.36,sig.level=.05,
+                        power=NULL)
Balanced 1-way anova power calculation 
              k = 5
              n = 15
              f = 0.36
      sig.level = 0.05
          power = 0.67
NOTE: n is number in each group

Cognitive development study 
alternatives to ANOVA

> oneway.test(score~grade,data=df3)
1-way analysis of means (not assuming equal variances)
data:  score and grade
F = 3, num df = 4, denom df = 35, p-value = 0.04

> kruskal.test(score~grade,data=df3)
Kruskal-Wallis rank sum test
data:  score by grade
Kruskal-Wallis chi-squared = 9, df = 4, p-value = 0.07

K-W Null Hypothesis:  
• groups were sampled from the same distribution 
• if we assume distributions have same shape & scale: 

- then H0 is that group medians are equal

linear contrasts/comparisons

Omnibus vs. Focussed F tests

• A significant omnibus F test tests a very general hypothesis 

- H0: all group means are equal; H1: not all means are equal 

- H0: all group effects are zero; H1: not all group effects are zero 

• Significant F doesn’t tell us how group means differ 

• Generality of omnibus F often comes at cost of reduced power
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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Omnibus vs. Focussed F tests

Omnibus F test is not significant:

> lm.01 <- lm(score~grade,data=df3)
> anova(lm.01)
Analysis of Variance Table
Response: score
          Df  Sum Sq Mean Sq F value  Pr(>F)  
grade      4  1361.2  340.31  2.2578 0.07152 
Residuals 70 10550.9  150.73                  

focussed tests provide more power

linear contrasts often more appropriate & more powerful

> c1 <- c(-1/2,-1/2,1/3,1/3,1/3) # (g1 & g2) vs (g3 & g4 & g5)
> c2 <- c(-1,1,0,0,0) # g1 vs g2
> c3 <- c(0,0,-1,1/2,1/2) # g3 vs (g4 & g5)
> c4 <- c(0,0,0,-1,1) # (g4 vs g5)
> contrasts(df3$grade) <- cbind(c1,c2,c3,c4)

> fractions( contrasts(df3$grade) )
       c1   c2   c3  c4
g1 -1/2   -1    0    0
g2 -1/2    1    0    0
g3  1/3    0   -1    0
g4  1/3    0  1/2   -1
g5  1/3    0  1/2    1

Linear Contrast Example
H0: (means of grades 3,4,5) = (means of grades 1,2)  
H1: (means of grades 3,4,5) ≠ (means of grades 1,2) 

> aov.02 <- aov(score~grade,data=df3)

> summary(aov.02,
+        split=list(grade=list(c1=1,c2=2,c3=3,c4=4)))
                        Df   SS      MS      F        Pr(>F)  
grade                4   1361   340.3   2.258 0.0715 .
  grade: c1        1    753   752.9   4.995  0.029 *
  grade: c2-c4   3    608   202.7   1.345  0.269  
 Residuals   70  10551   150.7                 

Linear Contrast Example
H0: (means of grades 3,4,5) = (means of grades 1,2)  
H1: (means of grades 3,4,5) ≠ (means of grades 1,2) 



Trend Analysis Example 
linear contrasts can be more powerful & more appropriate tests of null hypothesis

H0: linear trend of score across grade = 0 
H1: linear trend of score across grade ≠ 0

         Lin     Quad     Cubic    Quartic
[g1] -0.632  0.535 -3.16e-01  0.120
[g2] -0.316 -0.267  6.32e-01 -0.478
[g3]  0.000 -0.535 -4.10e-16  0.717
[g4]  0.316 -0.267 -6.32e-01 -0.478
[g3]  0.632  0.535  3.16e-01  0.120

  

Bennett, PJ PSYCH 710 Chapter 6

●

●

●

●

●

1 2 3 4 5

−0
.6

−0
.2

0.
2

0.
6

linear trend

group

Y

●

●

●

●

●

1 2 3 4 5

−0
.4

0.
0

0.
4

quadratic trend

group

Y

●

●

●

●

●

1 2 3 4 5

−0
.6

−0
.2

0.
2

0.
6

cubic trend

group

Y ●

●

●

●

●

1 2 3 4 5

−0
.4

0.
0

0.
4

quartic trend

group

Y

Figure 2: Linear, quadratic, cubic, and quartic trends.

## [1] a1 a2 a3 a4 a5
## Levels: a1 < a2 < a3 < a4 < a5

unique(rose$ageGroup)

## [1] g1 g2 g3 g4 g5
## Levels: g1 g2 g3 g4 g5

Note the di↵erence in the levels for orderedAge and ageGroup.

6.1.3 trend analysis using aov

Now we simply do an ANOVA with our new ordered variable using aov:

rose.aov.02 <- aov(score ~ orderedAge, data = rose)
summary(rose.aov.02)

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 113.9 1.67 0.17
## Residuals 45 3065 68.1

The results are exactly the same as the previous one. Why? Because the ANOVA table shows
the overall e↵ect of group, which does not depend on the code used to represent the group variable.
In other words, the overall, omnibus F is exactly the same regardless of whether group is represented

4

> summary(aov.trends,
+         split=list(grade=list(Lin=1,NonLin=2:4)))
                         Df     SS        MS      F          Pr(>F)   
grade                 4    1361    340.3   2.258    0.07152
  grade: Lin         1   1270  1269.9   8.425    0.00495 **
  grade: NonLin  3        91     30.5   0.202    0.89460   
Residuals         70  10551   150.7                   

Trend Analysis Example 
linear contrasts can be more powerful & more appropriate tests of null hypothesis

H0: linear trend of score across grade = 0 
H1: linear trend of score across grade ≠ 0

Linear Contrasts (Comparisons)

• Contrasts allow us to evaluate focussed hypotheses 

- evaluate specific pattern of differences among group means 

• Each contrast is defined by a set of contrast weights 

- weights (c1, c2, … ca) specify a pattern of group means 

- value of contrast, ѱ, is a weighted combination of group means 

‣ ѱ = c1 Y︤︤1 + c2 Y︤︤2 + c3 Y︤︤3 + c4 Y︤︤4 + … ca Y︤︤a 

Hypotheses tested with Linear Contrasts

• Linear contrasts are defined by weights 

- must sum to zero 

- sum(1/2, 1/2,-1/3, -1/3,-1/3) = 0 

• Multiplying weights by constant produces an 
equivalent linear contrast 

- w1 = (1/2, 1/2,-1/3, -1/3,-1/3) 

- w2 = 6 x w1 = (3,3,-2,-2,-2) 

- w1 is equivalent to w2

H0 :
1
2

μ1 +
1
2

μ2 −
1
3

μ3 −
1
3

μ4 −
1
3

μ5 = 0

H1 :
1
2

μ1 +
1
2

μ2 −
1
3

μ3 −
1
3

μ4 −
1
3

μ5 ≠ 0

contrast weights

H0 : 3μ1 + 3μ2 − 2μ3 − 2μ4 − 2μ5 = 0

H1 : 3μ1 + 3μ2 − 2μ3 − 2μ4 − 2μ5 ≠ 0

contrast weights



Contrasts are defined by weights 
each contrast sums to zero!

> myC1 <- c(-1/2,-1/2,1/3,1/3,1/3) # (grades 1,2) vs (grades 3,4,5)

> myC2 <- c(-1,1,0,0,0) # (grade 1) vs (grade 2)
> myC3 <- c(0,0,-1,1/2,1/2) # (grade 3) vs (grades 4,5)
> myC4 <- c(0,0,0,-1,1) # (grade 4) vs (grade 5)
> cMat <- cbind(myC1, myC2, myC3, myC4)
> fractions(cMat) # fractions() in MASS library
     myC1 myC2 myC3 myC4
[1,] -1/2   -1    0    0
[2,] -1/2    1    0    0
[3,]  1/3    0   -1    0
[4,]  1/3    0  1/2   -1
[5,]  1/3    0  1/2    1

Hypotheses Evaluated by a Contrast

H0:

H1:

> my.weights0 <- c(3,3,-2,-2,-2)

3μ1 + 3μ2 − 2μ3 − 2μ4 − 2μ5 = 0

3(μ1 + μ2) − 2(μ3 + μ4 + μ5) = 0

3(μ1 + μ2) = 2(μ3 + μ4 + μ5)

3
(μ1 + μ2)

2
= (μ3 + μ4 + μ5)

(μ1 + μ2)
2

=
(μ3 + μ4 + μ5)

3

(μ1 + μ2)
2

≠
(μ3 + μ4 + μ5)

3

N.B. my.weights0 is equivalent to c(1/2, 1/2, -1/3,-1/3,-1/3) 

Hypotheses Evaluated by a Contrast
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Figure 1: Boxplots of y data for di↵erent groups, g.
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> source(url("http://psycserv.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))

[1] "loading function linear.comparison"

The source command loaded several commands that can be used to perform a linear comparison among means in a

one-way design. Next, I have to specify my contrast weights:

> my.weights <- c(-1, -1, -1, -1, -1, -1, 6)

We will discuss the meaning of the contrast weights in the following section. Finally, I use the linear.comparison
command, which was loaded into R’s workspace by the previous source command, to perform the linear comparison:

> my.contrast <- linear.comparison(y, g, c.weights = my.weights)

[1] "computing linear comparisons assuming equal variances among groups"
[1] "C 1: F=7.218, t=2.687, p=0.009, psi=100.218, CI=(-2.897,203.332), adj.CI= (25.673,174.762)"

> my.contrast[[1]]$F

[1] 7.21771

> my.contrast[[1]]$p.2tailed

[1] 0.00921941

The F test for this linear contrast, or linear comparison, is significant, even though the omnibus
F test was not.

4.1.1 using standard R commands

In this section I will show you how to perform the linear comparison with R’s built-in commands
(i.e., without using the linear.comparison command). The first step is to inform R that I want to
perform a particular comparison among the various groups represented by the factor g:

> contrasts(g) <- my.weights

Next, I perform an ANOVA. Note that I’m using the aov command, rather than the lm command:

> my.aov <- aov(y~g)

Finally, I display the ANOVA table in a way that splits the group e↵ect into various pieces:

> summary(my.aov, split=list(g=list(myContrast=1,others=2:6)))

The split syntax is complicated because it is a list of lists: It is used to inform R to split a list of
terms in the linear model (e.g., g) into lists of pieces. In this case, we’re telling R to split the e↵ects
related to factor g into two pieces: the first piece corresponds to our linear contrast, and the second
piece is a combination of five other things that are not of interest. We will discuss what these pieces
mean in the following sections. For now, let’s examine the output of the summary command:

Df Sum Sq Mean Sq F value Pr(>F)
g 6 3431 572 1.73 0.1296
g: myContrast 1 2391 2391 7.22 0.0092 **
g: others 5 1039 208 0.63 0.6794

Residuals 63 20873 331
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that the F and p values listed in the ANOVA table are the same (to within rounding error)
as those provided by linear.comparison. However, it is important to note that the two methods
give the same results only when there are equal n per group. If the design in unbalanced, then aov
yields di↵erent values for SScontrast, F , and p. So you should only use aov to evaluate linear contrasts
for balanced designs.

Finally, I want to show you how to perform a linear contrast with the lm() command:

3
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> # list 1st column of weights (printed as 1 row):
> contrasts(g)[,1] # they are the same as before

g1 g2 g3 g4 g5 g6 g7
-1 -1 -1 -1 -1 -1 6

> my.lm <- lm(y~g) # construct the linear
> summary(my.lm) # list the coefficients and t tests

Call:
lm(formula = y ~ g)

Residuals:
Min 1Q Median 3Q Max

-43.83 -11.38 -0.39 11.14 47.32

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.044 2.176 44.15 <2e-16 ***
g1 2.386 0.888 2.69 0.0092 **
g2 -6.153 5.756 -1.07 0.2891
g3 -3.150 5.756 -0.55 0.5861
g4 0.163 5.756 0.03 0.9775
g5 5.502 5.756 0.96 0.3428
g6 -5.084 5.756 -0.88 0.3804
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.2 on 63 degrees of freedom
Multiple R-squared: 0.141, Adjusted R-squared: 0.0594
F-statistic: 1.73 on 6 and 63 DF, p-value: 0.13

The first coe�cient, g1, is the one that corresponds to our contrast. Notice that the t test for that
coe�cient yields the same p-value as our previous F test. Furthermore, the values of t and F are
related: t2 = 2.692 = 7.23 which is equal to our value of F (to within rounding error). In other
words, the two-tailed t test in this summary table is equivalent to the F test in the ANOVA table
listed above. Fortunately, lm works even with unbalanced designs (i.e., the values of t and p will be
very close to those obtained with linear.comparison).

4.2 Complex Comparisons

The previous examples used a linear contrast to test the null hypothesis:

�1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + 6µ7 = 0

which is equivalent to the null hypotheses

6µ7 � 1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

and, by multiplying both sides of the equation by 1
6 ,

µ7 �
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

which is equivalent (finally), to

µ7 =
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (1)

4
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> # list 1st column of weights (printed as 1 row):
> contrasts(g)[,1] # they are the same as before

g1 g2 g3 g4 g5 g6 g7
-1 -1 -1 -1 -1 -1 6

> my.lm <- lm(y~g) # construct the linear
> summary(my.lm) # list the coefficients and t tests

Call:
lm(formula = y ~ g)

Residuals:
Min 1Q Median 3Q Max

-43.83 -11.38 -0.39 11.14 47.32

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.044 2.176 44.15 <2e-16 ***
g1 2.386 0.888 2.69 0.0092 **
g2 -6.153 5.756 -1.07 0.2891
g3 -3.150 5.756 -0.55 0.5861
g4 0.163 5.756 0.03 0.9775
g5 5.502 5.756 0.96 0.3428
g6 -5.084 5.756 -0.88 0.3804
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 18.2 on 63 degrees of freedom
Multiple R-squared: 0.141, Adjusted R-squared: 0.0594
F-statistic: 1.73 on 6 and 63 DF, p-value: 0.13

The first coe�cient, g1, is the one that corresponds to our contrast. Notice that the t test for that
coe�cient yields the same p-value as our previous F test. Furthermore, the values of t and F are
related: t2 = 2.692 = 7.23 which is equal to our value of F (to within rounding error). In other
words, the two-tailed t test in this summary table is equivalent to the F test in the ANOVA table
listed above. Fortunately, lm works even with unbalanced designs (i.e., the values of t and p will be
very close to those obtained with linear.comparison).

4.2 Complex Comparisons

The previous examples used a linear contrast to test the null hypothesis:

�1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + 6µ7 = 0

which is equivalent to the null hypotheses

6µ7 � 1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

and, by multiplying both sides of the equation by 1
6 ,

µ7 �
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

which is equivalent (finally), to

µ7 =
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (1)

4

H0:
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5

H1:

Hypotheses Evaluated by a Contrast
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> w1 <- c(-2,-2,0,1,1,1,1)
> (w2 <- w1/4)
[1] -1/2 -1/2  0  1/4  1/4  1/4  1/4
> # sum(w1) = sum(w2) = 0

H0: −1
2

(μ1 + μ2) + 0 × μ3 +
1
4

(μ4 + μ5 + μ6 + μ7) = 0

(μ4 + μ5 + μ6 + μ7)
4

=
(μ1 + μ2)

2

(μ4 + μ5 + μ6 + μ7)
4

≠
(μ1 + μ2)

2

H1: (μ4 + μ5 + μ6 + μ7)
4

−
(μ1 + μ2)

2
≠ 0



Hypotheses Evaluated by a Contrast
> my.weights0 <- c(3,0,-1,-1,-1)

HO: 3μ1 − 0μ2 − 1μ3 − 1μ4 − 1μ5 = 0

3μ1 − 1(μ3 + μ4 + μ5) = 0

3μ1 = 1(μ3 + μ4 + μ5)

μ1 =
1
3

(μ3 + μ4 + μ5)

H1:
μ1 ≠

1
3

(μ3 + μ4 + μ5)

> w2 <- c(1,0,-1/3,-1/3,-1/3) # my.weights0 / 3

General Form of Linear Contrast
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5

weighted sum of population means equals zero
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5

sum of weights must equal zero
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5

value of contrast equals weighted sum of group means
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5

Evaluate comparison with F: With equal n per group:

df = (1, N-a)

SScontrast = MScontrast

contrast df = 1

Hypotheses tested with Linear Contrasts

1-tailed tests
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2
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μ1 +
1
2
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1
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μ3 −
1
3

μ4 −
1
3

μ5 ≠ 0

2-tailed tests

General Form of Linear Contrast 
(directional tests evaluated with t statistic)
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that the
mean of group 7 does not di↵er from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 6=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa =  = 0 (2)

where the weights of the linear contrast are constrained to sum to zero

aX

j=1

cj = 0 (3)

and the estimation of the comparison,  ̂, is

 ̂ =
aX

j=1

(cjȲj) (4)

In the example from the preceding section,  ̂ = 100.2.

> my.contrast[[1]]$psi

[1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2, then
we would use the following contrast

 = (1)µ1 + (1)µ2 � 2µ3 + (0)µ4

and our coe�cients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coe�cients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coe�cients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
( 2)/

Pa
j=1(c

2
j/nj)

MSW
(5)

when n is equal across groups, Equation 5 simplifies to

F =
(n 2)/

Pa
j=1(c

2
j)

MSW
(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom

for each contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is
N � a, where a is the number of groups or, equivalently, the number of parameters in the full model
(i.e., an intercept and a � 1 ↵’s). Most of these values are contained in the variable returned by
linear.comparison:

> my.contrast[[1]]$F

[1] 7.21771

5
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> my.contrast[[1]]$SS.contrast

[1] 2391.33

> my.contrast[[1]]$df1

[1] 1

> my.contrast[[1]]$df2

[1] 63

We can use these quantities to calculate MSW = SScontrast/F = 331.3. The p-value was 0.00922, which
is less than ↵ = .05, so we reject the two-tailed null hypothesis described by Equation 1.

Examination of Equation 5 shows that  is divided by a weighted sum of contrast weights. This
division means that the values of SScontrast, F , and p are not altered by multiplying the contrast
weights by a constant. In other words, contrast weights of (for example) c=(1, 1, 1, -3), c=(2, 2, 2,
-6), and c=(1/3, 1/3, 1/3, -1) will all give the same values of SScontrast, F , and p (although the value
of  will di↵er; see Equation 4).

4.2.1 one-tailed tests

How can we evaluate the following hypotheses?

H0 : µ7  1
6(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (7)

H1 : µ7 >
1
6(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (8)

A one-tailed test is appropriate here. One-tailed tests can be done easily with t tests, and therefore
it would be useful to convert our F statistic (Equation 5) into a t statistic. In fact, it can be shown
that

t =
 /

qPa
j=1(c

2
j/nj)

p
MSW

(9)

follows a t distribution with N � a degrees of freedom. A comparison of Equations 5 and 9 will show
that F = t2, and therefore t = ±

p
F . In other words, it is possible to recover the magnitude of

t simply by taking the square-root of F . The sign of t can be recovered by noting the sign of  ̂:
if  ̂ < 0, then t = �

p
F , but if  ̂ > 0 then t =

p
F . In our example,  ̂ = 100.2, and therefore

t =
p
7.2177 = 2.68.

Finally, we can evaluate the null hypothesis. Our null hypothesis predicts that   0. Therefore,
when the null hypothesis is true, the largest possible value of  in the population is zero, and
observed values of  (i.e.,  ̂) that are greater than zero are due only to sampling variation. This
is a long-winded way of saying that large, positive values of  ̂ are unlikely if the null hypothesis is
true. These statements about  ̂ can be extended to t (Eq. 9): large, positive values of t are unlikely
if the null hypothesis is true. We can calculate the probability of obtaining a value of t that is equal
to or greater than our observed value of t = 2.68 given the assumption that  = 0:

> pt(2.68,df=63,lower.tail=FALSE)

[1] 0.00469164
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df = N-a

t2 = F

t statistic more useful for 1-tailed tests
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General Form of Linear Contrast 
(the sign of the weights determines the direction of the test)

t statistic: the sign of weights matters!
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equivalent!

w = [ 1/2, 1/2, -1/3, -1/3, -1/3]
t statistic: the sign of weights matters!
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w = [ -1/2, -1/2, 1/3, 1/3, 1/3]

calculating contrasts with aov & emmeans

> contrasts(df3$grade) <- cMat
> fractions( contrasts(df3$grade) )
    myC1 myC2  myC3  myC4
g1  -1/2   -1      0      0
g2  -1/2    1      0      0
g3   1/3    0     -1      0
g4   1/3    0    1/2     -1
g5   1/3    0    1/2      1
> aov.02 <- aov(score~grade,data=df3)                

Conducting Contrasts with R aov()

Perform ANOVA with aov

Store contrast weights as columns in a matrix & then assign 
contrast weights to grouping variable

> aov.02 <- aov(score~grade,data=df3)
> summary(aov.02,
+        split=list(grade=list(c1=1,c2=2,c3=3,c4=4)))

            Df Sum Sq Mean Sq F value Pr(>F)  
grade        4   1361   340.3   2.258 0.0715 .
  grade: c1  1    753   752.9   4.995 0.0286 *
  grade: c2  1    251   250.6   1.662 0.2015  
  grade: c3  1    210   210.5   1.396 0.2413  
  grade: c4  1    147   147.3   0.977 0.3262  
Residuals   70  10551   150.7                 

Conducting Contrasts with R aov()

Write ANOVA table with summary(), but split results for 
grouping variable into separate lines for different contrasts

Linear contrasts assessed with F tests

split = list(factor.name=list(contrast.name.1=1, 
contrast.name.2=2,…))



Conducting Contrasts with emmeans 
emmeans = estimated marginal means

> # create emmeans object
> library(emmeans)
> aov.01 <- aov(score~grade,data=df3)
> aov.em <- emmeans(aov.01,specs=“grade")
> aov.em
 grade emmean   SE df lower.CL upper.CL
 g1      91.3 3.17 70     85.0     97.6
 g2      97.1 3.17 70     90.8    103.4
 g3      97.6 3.17 70     91.3    103.9
 g4     100.0 3.17 70     93.7    106.3
 g5     104.4 3.17 70     98.1    110.7
Confidence level used: 0.95

Very statisticious: Getting started with emmeans

(specs is the factor being analyzed)

(Estimated Marginal Means)

Conducting Contrasts with emmeans 
emmeans = estimated marginal means

> myContrasts <- list(c1=myC1,
+                               c2=myC2,
+                               c3=myC3,
+                               c4=myC4)
> contrast(aov.em,
+              method=myContrasts,
+              adjust="none")
 contrast estimate   SE df t.ratio p.value
 c1           6.47 2.89 70 2.235   0.0286 
 c2           5.78 4.48 70 1.289   0.2015 
 c3           4.59 3.88 70 1.182   0.2413 
 c4           4.43 4.48 70 0.989   0.3262

Very statisticious: Getting started with emmeans

(p-values are the same as those obtained previously)

Conducting Contrasts with linear.comparison 
linear.comparison() & emmeans() yield same results

> source(url("http://pnb.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))
[1] "loading function linear.comparison"
> y <- df3$score
> g <- df3$grade
> myContrast1 <- linear.comparison(y,g,c.weights = myContrasts,var.equal=T)
[1] "computing linear comparisons assuming equal variances among groups"
[1] "C 1: F=4.995, t=2.235, p=0.029, psi=6.467, CI=(0.367,12.568), adj.CI= (-0.952,13.887)"
[1] "C 2: F=1.662, t=1.289, p=0.202, psi=5.780, CI=(-4.615,16.175), adj.CI= (-5.714,17.274)"
[1] "C 3: F=1.396, t=1.182, p=0.241, psi=4.588, CI=(-2.544,11.719), adj.CI= (-5.366,14.542)"
[1] "C 4: F=0.977, t=0.989, p=0.326, psi=4.432, CI=(-2.955,11.819), adj.CI= (-7.062,15.926)"

trend analysis

https://aosmith.rbind.io/2019/03/25/getting-started-with-emmeans/
https://aosmith.rbind.io/2019/03/25/getting-started-with-emmeans/


Trend Analysis  
trends are linear contrasts

• the analysis of trends uses the same methods as linear contrasts 

• weights are designed to evaluate specific differences across groups: 

- linear, quadratic, cubic, etc. 

• weights must sum to zero 

• weights can be calculated using R’s contr.poly function 

- useful when differences between levels on group variable are not constant

> contr.poly(n=5,scores=c(8,9,10,11,12)) 
              .L              .Q               .C                 ^4 
[1,] -0.6324555  0.5345225 -3.162278e-01  0.1195229 
[2,] -0.3162278 -0.2672612  6.324555e-01 -0.4780914 
[3,]  0.0000000 -0.5345225 -4.095972e-16  0.7171372 
[4,]  0.3162278 -0.2672612 -6.324555e-01 -0.4780914 
[5,]  0.6324555  0.5345225  3.162278e-01  0.1195229 

> contr.poly(n=5,scores=c(8,9,10,12,15)) 
             .L               .Q               .C             ^4 
[1,] -0.5045250  0.54194676 -0.4466312  0.22862383 
[2,] -0.3243375 -0.01290349  0.4344281 -0.71127414 
[3,] -0.1441500 -0.38710483  0.4685966  0.64014672 
[4,]  0.2162250 -0.59356074 -0.6077113 -0.17781853 
[5,]  0.7567875  0.45162230  0.1513177  0.02032212 

Trend Analysis Example 
trends are linear contrasts

>  # set polynomial contrasts as default for ordered factors:
> options(contrasts=c(“contr.sum”,”contr.poly”)
> load(file=url('http://pnb.mcmaster.ca/bennett/psy710/labs/L3/hw3-2021.rda'))
> sapply(df3,class)
$grade
[1] "ordered" "factor" 
$score
[1] "numeric"
> contrasts(df3$grade)
      .L    .Q    .C    ^4
g1 -0.63  0.53 -0.32  0.12
g2 -0.32 -0.27  0.63 -0.48
g3  0.00 -0.53  0.00  0.72
g4  0.32 -0.27 -0.63 -0.48
g5  0.63  0.53  0.32  0.12

Bennett, PJ PSYCH 710 Chapter 6

●

●

●

●

●

1 2 3 4 5

−0
.6

−0
.2

0.
2

0.
6

linear trend

group

Y

●

●

●

●

●

1 2 3 4 5

−0
.4

0.
0

0.
4

quadratic trend

group

Y

●

●

●

●

●

1 2 3 4 5

−0
.6

−0
.2

0.
2

0.
6

cubic trend

group

Y ●

●

●

●

●

1 2 3 4 5

−0
.4

0.
0

0.
4

quartic trend

group

Y

Figure 2: Linear, quadratic, cubic, and quartic trends.

## [1] a1 a2 a3 a4 a5
## Levels: a1 < a2 < a3 < a4 < a5

unique(rose$ageGroup)

## [1] g1 g2 g3 g4 g5
## Levels: g1 g2 g3 g4 g5

Note the di↵erence in the levels for orderedAge and ageGroup.

6.1.3 trend analysis using aov

Now we simply do an ANOVA with our new ordered variable using aov:

rose.aov.02 <- aov(score ~ orderedAge, data = rose)
summary(rose.aov.02)

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 113.9 1.67 0.17
## Residuals 45 3065 68.1

The results are exactly the same as the previous one. Why? Because the ANOVA table shows
the overall e↵ect of group, which does not depend on the code used to represent the group variable.
In other words, the overall, omnibus F is exactly the same regardless of whether group is represented

4

> polyWeights <- contr.poly(n=5)
> round(cor(polyWeights),digits=2)
       .L      .Q     .C     ^4
.L    1.00  0.00 0.00  0.00
.Q   0.00  1.00 0.00  0.00
.C   0.00  0.00 1.00  0.00
^4   0.00  0.00 0.00  1.00

Trend weights are orthogonal

Trend Analysis Example 
trends are linear contrasts

> contrasts(df3$grade) <- contr.poly(n=5,scores=1:5)
> aov.trends <- aov(score~grade,data=df3)
> summary(aov.trends,
+         split=list(grade=list(Lin=1,Quad=2,Cube=3,Quart=4)))

                  Df     SS     MS         F           Pr(>F)   
grade                4   1361   340.3     2.258     0.07152 
  grade: Lin       1   1270  1269.9    8.425     0.00495 **
  grade: Quad   1    1             0.8    0.005     0.94354   
  grade: Cube   1    80         80.4    0.533     0.46760   
  grade: Quart  1     10        10.2     0.068     0.79530   
Residuals      70  10551   150.7  

  

H0 : − 0.63μ1 − 0.32μ2 + 0.32μ4 + 0.63μ5 = 0

H1 : − 0.63μ1 − 0.32μ2 + 0.32μ4 + 0.63μ5 ≠ 0

H0 & H1 defined by trend weights:

Trend Analysis Example 
trends are linear contrasts

> coef(aov.trends)
(Intercept)     grade.L     grade.Q     grade.C     grade^4 
      98.08        9.20       -0.23           2.32          -0.83 
> wLin <- c(-0.63,-0.32,0,0.32,0.63) # linear trend weights
> gradeMean <- with(df3,tapply(score,grade,mean)) # group means
> gNumber <- seq(1:5)
> plot(x=gNumber,

y=98.08+9.20*wLin,
type=”l”,
ylim=c(85,110),
xlab=“grade",
ylab="score")

> points(x=gNumber,
y=gradeMean,
pch=19, cex=2)

# line defined by intercept & 
linear trend coefficient

intercept determines height 
grade.L coefficient & trend weights determine slope



Trend Analysis Example 
trends are linear contrasts

> # emmeans poly method uses polynomial contrasts
> # and assumes equally-spaced levels on grouping factor
> # ?poly.emmc for details
> aov.01.em <- emmeans(aov.01,specs="grade")
> contrast(aov.01.em,method="poly")
 contrast  estimate   SE   df   t.ratio  p.value
 linear        29.096  10.0   70  2.903  0.0049 
 quadratic   -0.843  11.9   70 -0.071  0.9435 
 cubic           7.321 10.0   70  0.730   0.4676 
 quartic       -6.907  26.5  70 -0.260   0.7953

Trend Analysis Example 
trends are linear contrasts

> summary(aov.trends,
+         split=list(grade=list(Lin=1,NonLin=2:4)))
                         Df     SS        MS      F          Pr(>F)   
grade                 4    1361    340.3   2.258    0.07152
  grade: Lin         1   1270  1269.9   8.425    0.00495 **
  grade: NonLin  3        91     30.5   0.202    0.89460   
Residuals         70  10551   150.7                   

  

Can evaluate all higher-order, nonlinear 
trends with a single F test

effect size & association strength

Effect Size for a Linear Comparison

Bennett, PJ PSYCH 710 Chapter 4

> c1 <- c(-1/3,-1/3,-1/3,1); # reverse the sign of the 1st contrast weights
> contrasts(bp$group) <- cbind(c1,c2,c3) # link contrasts to group
> bp.lm.02 <- lm(blood~group,data=bp) # new anova
> summary(bp.lm.02) # list coefficients and p-values

Call:
lm(formula = blood ~ group, data = bp)

Residuals:
Min 1Q Median 3Q Max

-11.00 -5.25 0.00 3.75 17.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.000 1.854 48.53 <2e-16 ***
groupc1 -7.000 3.190 -2.19 0.043 *
groupc2 0.333 3.018 0.11 0.913
groupc3 1.500 2.649 0.57 0.579
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.21 on 16 degrees of freedom
Multiple R-squared: 0.237, Adjusted R-squared: 0.0937
F-statistic: 1.66 on 3 and 16 DF, p-value: 0.216

Does this mean that we now fail to reject the null hypothesis, and that our contrast is no longer sig-
nificant? The answer is, no. To see why, we need to re-construct our null and alternative hypothesis.
We predicted that the means of the first three groups will be greater than the mean of the fourth
group. If our prediction is correct, then – given the values of the weights used to construct our linear
contrast – we would expect  < 0. Therefore, the null hypothesis for this set of weights is  � 0,
and the alternative is  < 0. Based on the results of our t test, we would reject the null hypothesis
(t(16) = �2.19, p = 0.0215, one-tailed). The important point here is that the null and alternative
hypotheses for directional tests of linear contrasts are a↵ected by the sign of the contrast weights.

4.6 Measures of E↵ect Size & Association Strength

A common measure of the standardized di↵erence between two means is Cohen’s d

d = (µ1 � µ2)/�e

which can be estimated from the data by

d̂ = (Ȳ1 � Ȳ2)/
p
MSW (17)

In the case of two or more groups, we can define a standardized di↵erence for a contrast among
population means as

d = 2 /

 
�e

"
aX

j=1

|cj|
#!
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We can estimate d from data by

d = 2 ̂/

 
p

MSW
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j=1

|cj|
#!

(18)

When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
nj(Ȳj � Ȳu)

2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)
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Cohen’s d (for a contrast)

Expresses  in terms of the number of standard deviations of 
population error distribution

Ψ

linear contrasts are used to compare two weighted means, so Cohen’s d is approprate



Effect Size 
Cohen’s d calculation with emmeans & linear.comparison

> library(emmeans)
> aov.01 <- aov(score~grade,data=df3)

> sigma <- sigma(aov.01) # sqrt(MS.resid)
> edf <- df.residual(aov.01) # residual df
> aov.em <- emmeans(aov.01,specs="grade")
> myContrasts <- list(c1=myC1,c2=myC2,c3=myC3,c4=myC4)
> # calculate Cohen’s d for each contrast:
> eff_size(aov.em,sigma,edf,method=myContrasts)
 contrast effect.size   SE  df    lower.CL   upper.CL
 c1              0.53      0.24  70     0.05       1.01
 c2              0.47      0.37  70    -0.26       1.20
 c3              0.37      0.32  70    -0.26       1.01
 c4              0.36      0.37  70    -0.37       1.09

Effect Size 
Cohen’s d calculation with emmeans & linear.comparison
> y <- df3$score
> g <- df3$grade
> myContrast1 <- linear.comparison(y,g,c.weights = myContrasts,var.equal=T)
[1] "computing linear comparisons assuming equal variances among groups"
[1] "C 1: F=4.995, t=2.235, p=0.029, psi=6.467, CI=(0.367,12.568), adj.CI= (-0.952,13.887)"
[1] "C 2: F=1.662, t=1.289, p=0.202, psi=5.780, CI=(-4.615,16.175), adj.CI= (-5.714,17.274)"
[1] "C 3: F=1.396, t=1.182, p=0.241, psi=4.588, CI=(-2.544,11.719), adj.CI= (-5.366,14.542)"
[1] "C 4: F=0.977, t=0.989, p=0.326, psi=4.432, CI=(-2.955,11.819), adj.CI= (-7.062,15.926)"
> myContrast1[[1]]$d.effect.size
[1] 0.53
> myContrast1[[2]]$d.effect.size
[1] 0.47
> myContrast1[[3]]$d.effect.size
[1] 0.37
> myContrast1[[4]]$d.effect.size
[1] 0.36

Note double brackets [[x]]!

Association Strength for a Linear Comparison
- Proportion of Between-Groups variation accounted for by contrast 
- With equal n, equals squared correlation between contrast weights & 

group means
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We can estimate d from data by

d = 2 ̂/
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(18)

When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
nj(Ȳj � Ȳu)

2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)

15

Bennett, PJ PSYCH 710 Chapter 4

We can estimate d from data by

d = 2 ̂/

 
p

MSW

"
aX

j=1

|cj|
#!

(18)

When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
nj(Ȳj � Ȳu)

2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)

15

- Proportion of total variation accounted for by contrast
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When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
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2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)

15

- Variation accounted for by contrast relative to the sum of 
contrast-variation and within-group (error) variation 

- Not affected by groups that are weighted zero 
- More resistant to changes in experimental design (e.g., adding 

or removing groups).

Association Strength 
linear.comparison

> str(myContrast1[[1]])
List of 15
 $ contrast      : num [1:5] -0.5 -0.5 0.333 0.333 0.333
 $ F             : num 4.99
 $ t             : num 2.23
 $ df1           : num 1
 $ df2           : int 70
 $ p.2tailed     : num 0.0286
 $ psi           : num 6.47
 $ confinterval  : num [1:2] 0.367 12.568
 $ adj.confint   : num [1:2] -0.952 13.887
 $ alpha         : num 0.05
 $ SS.contrast   : num 753
 $ d.effect.size : num 0.527
 $ R2.alerting   : num 0.553
 $ R2.effect.size: num 0.0632
 $ R2.contrast   : num 0.0666
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When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
nj(Ȳj � Ȳu)

2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)
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When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:
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2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
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When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
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alerting which is defined as
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So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
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can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :
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Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2
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group A even though that group is ignored in our contrast. The value of R2
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information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts
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unequal variances

Unequal Group Variances

• So far our tests assume equal variance in different groups 

• F/t tests for contrasts are not robust to violation of equal variance assumption 

• When groups have unequal variances, use a different method to calculate F/t 
denominator, which is an estimate of population error variance 

• Correcting for unequal var reduces denominator df (and, hence, power)
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Note that the degrees of freedom (df) correspond to the value in the denominator in Equation 5
and so were set to N � a = 63. Setting lower.tail to FALSE tells R that we want to know the
probability of getting a t value that is larger than 2.68; setting lower.tail to TRUE (the default value)
would return the probability of getting a value that is less than 2.68. The probability p = 0.0046
represents the probability of getting our result, or something more extreme, if the hypothesis that
 = 0 was true. Suppose, instead, we had assumed that  was some value less than zero? In that
case, the probability of getting a value of t that was equal to or greater than our observed value
would be even lower. Therefore, the value p = 0.0046 represents the highest probability of obtaining
our result (or something more extreme) given that the null hypothesis   0 is true. Adopting a
standard Type I error rate (i.e., ↵ = .01 or .05) would lead us to reject the null hypothesis in favour
of the alternative,  > 0.

4.3 Unequal Variances

The denominator in Equation 5 is MSW , which is an estimate of �2
e that is derived from all of the

groups, not just the ones being compared. When the variance is homogeneous across groups, MSW

is a better estimator of �2
e than an estimate obtained from a subset of the groups.

What if the variance is not homogeneous? It turns out that F tests of linear contrasts are not
robust to violations of the homogeneity of variance assumptions. Moreover, it is not the case that
violations of the assumption have the e↵ect of simply lowering ↵: sometimes ↵ will be increased
and other times it will be decreased. When the groups have unequal variances, therefore, we use a
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Fortunately, we rarely have to use Equations 12 and 13 to calculate F and df . Instead, we can
use linear.comparison() to do the heavy lifting:

> source(url("http://psycserv.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))

[1] "loading function linear.comparison"

> contrast.unequal.var <- linear.comparison(y, g,c.weights = list(c(-1, -1, -1, -1, -1, -1,6)), var.equal = FALSE)

[1] "computing linear comparisons assuming unequal variances among groups"
[1] "C 1: F=3.772, t=1.942, p=0.080, psi=100.218, CI=(-14.451,214.886), adj.CI= (-14.451,214.886)"

> contrast.unequal.var[[1]]$psi
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Note that the degrees of freedom (df) correspond to the value in the denominator in Equation 5
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Contrasts with unequal variances 
linear.comparison() can correct for unequal variances

> myContrast2 <- linear.comparison(y,g,c.weights = myContrasts,var.equal=F)
[1] "computing linear comparisons assuming unequal variances among groups"
[1] "C 1: F=4.471, t=2.114, p=0.041, psi=6.467, CI=(0.289,12.646), adj.CI= (-1.526,14.461)"
[1] "C 2: F=1.230, t=1.109, p=0.279, psi=5.780, CI=(-4.996,16.556), adj.CI= (-8.331,19.892)"
[1] "C 3: F=1.646, t=1.283, p=0.211, psi=4.588, CI=(-2.785,11.960), adj.CI= (-5.053,14.228)"
[1] "C 4: F=1.432, t=1.197, p=0.242, psi=4.432, CI=(-3.164,12.028), adj.CI= (-5.473,14.337)"
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We can estimate d from data by

d = 2 ̂/

 
p
MSW

"
aX

j=1

|cj|
#!

(18)

When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast. The
first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
aX

j=1

⇥
nj(Ȳj � Ȳu)

2
⇤

So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coe�cients and the group means when the group n’s are
equal.

Another measure of association strength is R2
e↵ectsize :

R2
e↵ectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but di↵erent denomi-
nators. R2

e↵ectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of association

strength. Suppose you are conducting a linear contrast that compares groups B and C to each other,
and ignores group A. It turns out that the values of R2

alerting and R2
e↵ectsize depend on the mean of

group A even though that group is ignored in our contrast. The value of R2
contrast is less dependent

on the value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey di↵erent

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

⇡ 1) but R2
e↵ectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts

In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

aX

j=1

(c1jc2j) = 0 (22)
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Equal n:
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where c1j and c2j are the coe�cients, or weights, of the two contrasts. When sample sizes are unequal,
contrasts are orthogonal if and only if

aX

j=1

(c1jc2j/nj) = 0 (23)

So, when sample sizes are equal, the pair of contrasts c1 = (1, 1, 1,�3) and c2 = (1, 1,�2, 0) are
orthogonal because

(1)(1) + (1)(1) + (1)(�2) + (�3)(0) = 0

However, c1 = (1, 1, 1,�3) and c3 = (1, 1, 0,�3) are not orthogonal because

(1)(1) + (1)(1) + (1)(0) + (�3)(�3) 6= 0

A set of contrasts is said to be mutually orthogonal if and only if every possible pair of contrasts
is orthogonal. For instance the set of contrasts

 1 = (1)µ1 + (1)µ2 + (�1)µ3 + (�1)µ4

 2 = (1)µ1 + (�1)µ2 + (0)µ3 + (0)µ4

 3 = (0)µ1 + (0)µ2 + (1)µ3 + (�1)µ4

is (mutually) orthogonal because each pair of contrasts is orthogonal.
The concept of orthogonality is important for the following reason: multiple orthogonal contrasts

of a set of group means provide independent pieces of information about the way the means di↵er. In
other words, orthogonal contrasts provide separate and unique information about group di↵erences.
Multiple contrasts that are not orthogonal, on the other hand, provide overlapping, correlated, and
partially-redundant information about group di↵erences. This special characteristic of orthogonal
contrasts is represented in the Equation 24, which is true only for orthogonal sets of contrasts:

a�1X

j=1

SScontrast,j = SSB (24)

Notice that the summation in Equation 24 is over a�1 contrasts. This leads to the second important
property of orthogonal contrasts: If there are a groups, then the largest possible set of orthogonal
contrasts will have a � 1 elements. I will refer to a set of a � 1 orthogonal contrast as constituting
a complete orthogonal set. Note that I am not suggesting that there are only a � 1 orthogonal
contrasts. In fact, there are an infinite number of orthogonal contrasts, and there are an infinite
number of orthogonal sets of contrasts. However, each complete orthogonal set will contain a � 1
elements.

These ideas about orthogonality, and the decomposition of SSB into independent pieces, will be
important when we discuss multiple comparisons.

16

Unequal n:

A set of contrasts is mutually orthogonal if all pairs of contrasts are orthogonal 

Orthogonal contrasts evaluate independent questions about group means

Complete Set of Mutually Orthogonal Contrasts

If there are a groups, then the largest set of mutually orthogonal contrasts will 
have (a-1) contrasts, and:
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• A complete set of orthogonal contrasts divides SSB into independent pieces of variation, 
• the sum of the (a-1) SScontrasts will equal SSB, 
• and the average of the contrast F values will equal the omnibus F.

Complete set of orthogonal contrasts 
breaks SSgroup into separate pieces

> cMat <- contrasts(df3$grade)
> fractions(cMat)
   myC1 myC2 myC3 myC4
g1 -1/2   -1    0    0
g2 -1/2    1    0    0
g3  1/3    0   -1    0
g4  1/3    0  1/2   -1
g5  1/3    0  1/2    1
> # these contrasts/columns are mutually orthogonal: 
> round(t(cMat) %*% cMat,digits=2)
     myC1 myC2 myC3 myC4
myC1 0.83    0  0.0    0
myC2 0.00    2  0.0    0
myC3 0.00    0  1.5    0
myC4 0.00    0  0.0    2

N.B. Each element in this matrix 
is the sum of cross-products.

Complete set of orthogonal contrasts 
breaks SSgroup into separate pieces

> aov.10 <- aov(score~grade,data=df3)
> summary(aov.10,
+         
split=list(grade=list(myC1=1,myC2=2,myC3=3,myC4=4)))
                       Df    SS      MS        F        Pr(>F)  
grade               4   1361   340.3   2.258  0.0715
  grade: myC1  1    753   752.9   4.995   0.0286 *
  grade: myC2  1    251   250.6   1.662   0.2015  
  grade: myC3  1    210   210.5   1.396   0.2413  
  grade: myC4  1    147   147.3   0.977   0.3262  
Residuals     70  10551   150.7  

> cMat <- contrasts(df3$grade)
> fractions(cMat)
   myC1 myC2 myC3 myC4
g1 -1/2   -1    0    0
g2 -1/2    1    0    0
g3  1/3    0   -1    0
g4  1/3    0  1/2   -1
g5  1/3    0  1/2    1
> # these contrasts/columns are mutually orthogonal: 
> round(t(cMat) %*% cMat,digits=2)
     myC1 myC2 myC3 myC4
myC1 0.83    0  0.0    0
myC2 0.00    2  0.0    0
myC3 0.00    0  1.5    0
myC4 0.00    0  0.0    2

SSgrade = 1361 = 753+251+210+147

Fgrade = 2.258 = (4.995+1.662+1.396+0.977) ÷ 4



multiple comparisons

Multiple Comparisons of Group Means

• Multiple comparisons inflate Type I error rate 

• Generally want to control family-wise Type I error rate 
by adjusting the per-comparison Type I error rate 

• for C = 100 comparisons 

- if 𝛼PC=.00051, then 𝛼FW ≤ .05 

• there are several methods for adjusting 𝛼PC
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Notes on Maxwell & Delaney

PSY710

5 Chapter 5 - Multiple Comparisons of Means

5.1 Inflation of Type I Error Rate

When conducting a statistical test, we typically set ↵ = .05 or ↵ = .01 so that the probability of making
a Type I error is .05 or .01. Suppose, however, we conduct 100 such tests. Further suppose that the null
hypothesis for each test is, in fact, true. Although ↵ for each individual test may be .05, the probability of
making at least one Type I error across the entire set of 100 tests is much greater than .05. Why? Because
the more tests we do, the greater the chances of making an error. More precisely, the probability of making
at least one Type I error is

P (at least one Type I error) = ↵FW = 1� (1� ↵PC)
C (1)

where C is the number of tests performed1. ↵PC is the per comparison Type I error rate; it represents the
probability of making a Type I error for each test. ↵FW , on the other hand, is the familywise Type I error
rate, and it represents the probability of making a Type I error across the entire family, or set, of tests.
For the one-way designs we are considering, ↵FW also equals the ↵ level for the entire experiment, or the
experimentwise error rate (↵EW ). For the current example, ↵ = .05, C = 100, and so ↵FW = 0.994079,
which means that it is very likely that we would make at least one Type I error in our set of 100 tests. Here,
in a nutshell, is the problem of conducting multiple tests of group means: the probability of making a Type
I error increases with the number of tests. If the number of tests, C, is large, then it becomes very likely
that we will make a Type I error.

When we are conducting multiple tests on group means, we generally want to minimize Type I errors
across the entire experiment, and so we need some way of maintaining ↵EW at some reasonably low level
(e.g., .05). One obvious way of controlling ↵EW is to rearrange Equation 1 to calculate the ↵PC that is
required for a given ↵FW and C:

↵PC = 1� (1� ↵FW )1/C (2)

According to Equation 2, when C = 100 and we want ↵FW = .05, we must set ↵PC to .0005128.

5.2 Planned vs. Post-hoc Comparisons

I will compare the group means with a linear contrast that assumes equal variance across all groups. Suppose
I conduct an experiment that compares the scores of subjects randomly assigned to eight di↵erent groups.
After inspecting the data, shown in Figure 1, I decide to compare the means of groups 4 and 7 because the
di↵erence between those groups looks fairly large. I can do the test two ways. First I can simply compare
the groups using a t test assuming equal group variances. In the following commands, notice how I use the
subset command to extract the data from the two groups, and then use R’s function t.test. I will set
↵ = .05. The null hypothesis is that the groups are equal; the alternative is that they di↵er.

> levels(g)

[1] "g1" "g2" "g3" "g4" "g5" "g6" "g7" "g8"

1Technically, Equation 1 is correct only if the tests form an orthogonal set and the sample sizes for each group are large.

1
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I conduct an experiment that compares the scores of subjects randomly assigned to eight di↵erent groups.
After inspecting the data, shown in Figure 1, I decide to compare the means of groups 4 and 7 because the
di↵erence between those groups looks fairly large. I can do the test two ways. First I can simply compare
the groups using a t test assuming equal group variances. In the following commands, notice how I use the
subset command to extract the data from the two groups, and then use R’s function t.test. I will set
↵ = .05. The null hypothesis is that the groups are equal; the alternative is that they di↵er.

> levels(g)

[1] "g1" "g2" "g3" "g4" "g5" "g6" "g7" "g8"

1Technically, Equation 1 is correct only if the tests form an orthogonal set and the sample sizes for each group are large.

1

if 𝛼PC = 0.05 and C = 100, then 𝛼FW = 0.994

Controlling False Discovery Rate

• Instead of controlling αFW, control False Discovery Rate (FDR): 

- Q = (# of false H0 rejections) / (total # H0 rejections) 

- FDR = Expected Value[Q] 

• When all H0 are true, controlling αFW and FDR are equivalent 

• When some H0 are false, FDR-based methods are more powerful 

Corrections for Multiple Comparisons

• Controlling 𝛼FW by adjusting 𝛼PC: 

- Bonferroni Adjustment (aka Dunn’s Procedure) 

- Holm’s Sequential Bonferroni Test 

• Controlling False Discovery Rate (FDR): 

- Benjamini & Hochberg’s (1995) Linear Step-Up Procedure (FDR) 

• Relative Power: FDR >  Holm’s > Bonferroni



Multiple Comparisons in R 
adjust p values with p.adjust()

> my.p.values <- c(.127,.08,.03,.032,.02,.001,.01,.005,.025)
> sort(my.p.values)
[1] 0.001 0.005 0.010 0.020 0.025 0.030 0.032 0.080 0.127
> p.adjust(sort(my.p.values),method='bonferroni')
[1] 0.009 0.045 0.090 0.180 0.225 0.270 0.288 0.720 1.000
> p.adjust(sort(my.p.values),method='holm')
[1] 0.009 0.040 0.070 0.120 0.125 0.125 0.125 0.160 0.160
> p.adjust(sort(my.p.values),method='fdr')
[1] 0.009 0.0225 0.0300 0.04114 0.04114 0.04114 0.04114 0.090 0.127

Significant tests (alpha/FDR = .05) are highlighted in orange font. 
N.B. Sorting p-values is not required.

Controlling Type I error rate 
p.adjust()

> p.adjust(p=c(0.000532,0.006100,0.340714,0.363286),method="bonferroni" )
[1] 0.002128 0.024400 1.000000 1.000000
> p.adjust(p=c(0.000532,0.006100,0.340714,0.363286),method="holm" )
[1] 0.002128 0.018300 0.681428 0.681428
> p.adjust(p=c(0.000532,0.006100,0.340714,0.363286),method="fdr" )
[1] 0.002128 0.012200 0.363286 0.363286

> summary(aov.vp,split=list(complexity=list(L=1,Q=2,C=3,q4=4)))
                          Df    SS         MS          F          Pr(>F)    
complexity          4    1.2709   0.3177    6.214    0.000691 ***
  complexity: L    1   0.7441    0.7441  14.552    0.000532 ***
  complexity: Q   1   0.4357    0.4357    8.521    0.006100 ** 
  complexity: C   1   0.0477    0.0477    0.933    0.340714    
  complexity: q4  1   0.0434    0.0434    0.848    0.363286    
Residuals         35   1.7897    0.0511                     

Controlling Type I error rate 
emmeans

> aov.vp <- aov(visPref~complexity,data=df4)
> vp.em <- emmeans(aov.vp,specs=“complexity")

> contrast(vp.em,method="poly",adjust="fdr")
 contrast   estimate   SE   df      t          p
 linear          0.964  0.253 35  3.815  0.0021 
 quadratic   -0.873  0.299 35 -2.919  0.0122 
 cubic         -0.244  0.253 35 -0.966  0.3633 
 quartic        0.616  0.669 35  0.921  0.3633 

P value adjustment: fdr method for 4 tests             

Setting family-wise alpha and FDR

• Generally, αFW and FDR are set to 0.01 or 0.05 

• larger αFW may be justified for small number of orthogonal comparisons 

- Bonferroni & Holm tests may reduce power too much 

- perhaps set αPC to 0.05 or 0.01 

‣ family-wise Type I error will increase but Type II error will decrease  

- Note: we do this with factorial ANOVA already…



All pairwise tests (Tukey HSD)

• Tukey HSD evaluates all pairwise differences between groups 

• Is more powerful than Bonferroni method (for between-subj designs) 

• Tukey HSD: 

- NOT necessary to evaluate omnibus F prior to Tukey test  

- assumes equal n per group & equal variances 

- Tukey-Kramer is valid with sample sizes are unequal 

- Dunnett’s T3 test is better with unequal n & unequal variances 
[see Kirk (1995, pp. 146-50) for more details]

Tukey HSD (all pairwise differences) 
optimal method for evaluating all pairwise differences

> TukeyHSD(aov.vp,which="complexity")
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = visPref ~ complexity, data = df4)
$complexity
             diff        lwr     upr   p adj
p2-p1  0.1663 -0.159 0.49  0.59
p3-p1  0.4620  0.137 0.79  0.00
p4-p1  0.4569  0.132 0.78  0.00
p5-p1  0.3369  0.012 0.66  0.04
p3-p2  0.2957 -0.029 0.62  0.09
p4-p2  0.2906 -0.035 0.62  0.10
p5-p2  0.1706 -0.154 0.50  0.56
p4-p3 -0.0051 -0.330 0.32  1.00
p5-p3 -0.1250 -0.450 0.20  0.80
p5-p4 -0.1199 -0.445 0.21  0.83

assumes equal variances

> library(PMCMRplus)
> dunnettT3Test(x=df4$visPref,g=df4$complexity)

Pairwise comparisons using Dunnett's T3 test for 
multiple comparisons with unequal variances

data: df4$visPref and df4$complexity

         p1     p2       p3         p4    
p2 0.8081  -           -            -     
p3 0.0037 0.1934  -            -     
p4 0.0057 0.2340 1.0000   -     
p5 0.0834 0.8475 0.9321 0.9563

P value adjustment method: single-step
alternative hypothesis: two.sided

does not assume equal variances

Tukey HSD (all pairwise differences) 
emmeans (assumes equal variances)

> vp.em <- emmeans(aov.vp,specs="complexity")
> contrast(vp.em,method="pairwise",adjust="tukey")
 contrast estimate    SE df t.ratio p.value
 p1 - p2     -0.17 0.113 35 -1.500  0.5900 
 p1 - p3     -0.46 0.113 35 -4.100  <.0001 
 p1 - p4     -0.46 0.113 35 -4.000  <.0001 
 p1 - p5     -0.34 0.113 35 -3.000  0.0400 
 p2 - p3     -0.30 0.113 35 -2.600  0.0900 
 p2 - p4     -0.29 0.113 35 -2.600  0.1000 
 p2 - p5     -0.17 0.113 35 -1.500  0.5600 
 p3 - p4      0.01 0.113 35  0.000  1.0000 
 p3 - p5      0.13 0.113 35  1.100  0.8000 
 p4 - p5      0.12 0.113 35  1.100  0.8300 

P value adjustment: tukey method for comparing a family of 5 estimates 

post-hoc comparisons

Scheffe method



Performing a Single Comparison

After plotting data, I decide to compare 
means of groups 4 & 7 using a t-test:
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Figure 1: Eight sets of data
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> y.4<-subset(y,g=="g4") # get scores for group 4

> y.7<-subset(y,g=="g7") # get scores for group 7

> t.test(y.4,y.7,var.equal=TRUE) # do t-test assuming equal variances

Two Sample t-test

data: y.4 and y.7

t = 4.165, df = 18, p-value = 0.0005813

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

13.84 42.01

sample estimates:

mean of x mean of y

111.33 83.41

The results are significant (t = 4.16, df = 18, p = 0.00058), so I reject the null hypothesis of no di↵erence
between groups 4 and 7.

In the second method, I will compare the groups using a linear contrast, again assuming equal variances
across groups. One advantage of this method is it uses all of the groups to derive an estimate of the
population error variance, whereas t.test only uses data from the two groups being compared. Not only is
the estimated error variance likely to be more accurate, but the test will have many more degrees of freedom
in the denominator and therefore be more powerful. As before, ↵ = .05 and the null hypothesis is that the
groups are equal. (Note the double brackets that I use to read the results stored in c.4vs7).

> lc.source<-url("http://psycserv.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R")

> source(lc.source)

[1] "loading function linear.comparison"

> close(getConnection(lc.source));

> my.contrast<-list(c(0,0,0,1,0,0,-1,0) );

> c.4vs7 <- linear.comparison(y,g,c.weights=my.contrast )

[1] "computing linear comparisons assuming equal variances among groups"

[1] "C 1: F=9.915, t=3.149, p=0.002, psi=27.924, CI=(14.560,41.287), adj.CI= (10.245,45.602)"

> c.4vs7[[1]]$F

[1] 9.915

> c.4vs7[[1]]$t

[1] 3.149

> c.4vs7[[1]]$p.2tailed

[1] 0.002387

Again, the comparison between the two groups is significant (t = 3.1487, df = 72, p = .002387).
Finally, for completeness, I will do the comparison using the lm() command:

> newG <- g; # copy grouping factor

> contrasts(newG) <- c(0,0,0,1,0,0,-1,0) # link contrast weights with newG

> newG.lm.01 <- lm(y~newG)

> summary(newG.lm.01) # print coefficients & t-tests
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Performing a Single Comparison

Next I use a linear contrast which uses all 
groups to derive estimate of error variance:
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> y.4<-subset(y,g=="g4") # get scores for group 4

> y.7<-subset(y,g=="g7") # get scores for group 7

> t.test(y.4,y.7,var.equal=TRUE) # do t-test assuming equal variances

Two Sample t-test

data: y.4 and y.7

t = 4.165, df = 18, p-value = 0.0005813

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

13.84 42.01

sample estimates:

mean of x mean of y

111.33 83.41

The results are significant (t = 4.16, df = 18, p = 0.00058), so I reject the null hypothesis of no di↵erence
between groups 4 and 7.

In the second method, I will compare the groups using a linear contrast, again assuming equal variances
across groups. One advantage of this method is it uses all of the groups to derive an estimate of the
population error variance, whereas t.test only uses data from the two groups being compared. Not only is
the estimated error variance likely to be more accurate, but the test will have many more degrees of freedom
in the denominator and therefore be more powerful. As before, ↵ = .05 and the null hypothesis is that the
groups are equal. (Note the double brackets that I use to read the results stored in c.4vs7).

> lc.source<-url("http://psycserv.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R")

> source(lc.source)

[1] "loading function linear.comparison"

> close(getConnection(lc.source));

> my.contrast<-list(c(0,0,0,1,0,0,-1,0) );

> c.4vs7 <- linear.comparison(y,g,c.weights=my.contrast )

[1] "computing linear comparisons assuming equal variances among groups"

[1] "C 1: F=9.915, t=3.149, p=0.002, psi=27.924, CI=(14.560,41.287), adj.CI= (10.245,45.602)"

> c.4vs7[[1]]$F

[1] 9.915

> c.4vs7[[1]]$t

[1] 3.149

> c.4vs7[[1]]$p.2tailed

[1] 0.002387

Again, the comparison between the two groups is significant (t = 3.1487, df = 72, p = .002387).
Finally, for completeness, I will do the comparison using the lm() command:

> newG <- g; # copy grouping factor

> contrasts(newG) <- c(0,0,0,1,0,0,-1,0) # link contrast weights with newG

> newG.lm.01 <- lm(y~newG)

> summary(newG.lm.01) # print coefficients & t-tests
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What was wrong with the preceding analyses?

Answer: I performed the analyses after inspecting the data and 
choosing to compare groups 4 & 7 because they looked different 
which, obviously, inflates Type I error

Planned vs. Post-hoc Comparisons

• Previous comparisons were planned 

• Last 2 comparisons, made after looking at data, were post-hoc 

• Scheffe method is preferred for post-hoc linear contrasts 

- compute contrast with normal procedures 

- evaluate observed F with new critical value: 

‣ FScheffe = (a-1) x Fα(FW) (df1= a-1; df2 = N-a) 

‣ a = number of groups 

‣ Fα(FW) is the F value required for desired alpha 

- FScheffe is “normal” omnibus F x (a-1) 

- alternatively, keep standard F & adjust p values using Scheffe adjustment 

• Scheffe method and omnibus F test are mutually consistent



Scheffe test 
for post-hoc comparisons

> (con.poly <- contrast(vp.em,method="poly",adjust="none"))
 contrast  estimate    SE df t.ratio p.value
 linear       0.964 0.253 35   3.815  0.0005
 quadratic   -0.873 0.299 35  -2.919  0.0061
 cubic       -0.244 0.253 35  -0.966  0.3407
 quartic      0.616 0.669 35   0.921  0.3633

> summary(con.poly,adjust="scheffe",scheffe.rank=4)
 contrast  estimate    SE df t.ratio p.value
 linear       0.964 0.253 35   3.815  0.0140
 quadratic   -0.873 0.299 35  -2.919  0.0977
 cubic       -0.244 0.253 35  -0.966  0.9178
 quartic      0.616 0.669 35   0.921  0.9300

P value adjustment: scheffe method with rank 4

These methods compute normal F and adjust the p 
value to be consistent with Scheffe method

Scheffe.rank should be set to degrees of freedom for 
grouping factor (i.e., a-1)

Scheffe test 
for post-hoc comparisons

> c1 <- c(-3, -3, 2, 2, 2)
> c2 <- c(-1,1,0,0,0)
> (con1 <- contrast(vp.em,method=list(c1,c2),adjust="none"))
 contrast           estimate    SE df t.ratio p.value
 c(-3, -3, 2, 2, 2)    2.013 0.438 35   4.596  0.0001
 c(-1, 1, 0, 0, 0)     0.166 0.113 35   1.471  0.1503

> summary(con1,adjust="scheffe",scheffe.rank=4)
 contrast           estimate    SE df t.ratio p.value
 c(-3, -3, 2, 2, 2)    2.013 0.438 35   4.596  0.0019
 c(-1, 1, 0, 0, 0)     0.166 0.113 35   1.471  0.7068

P value adjustment: scheffe method with rank 4 

These methods compute normal F and adjust the p 
value to be consistent with Scheffe method

Scheffe.rank should be set to degrees of freedom for 
grouping factor (i.e., a-1)


