PSYCH 710

Linear Contrasts, Trend Analysis, \& Multiple Comparisons
Sept 26, 2023

Prof. Patrick Bennett

Cognitive development study

- Cognitive test administered to grades 1-5
- 15 children per grade
- average scores increase approx linearly
- correlation between grade \& $\bar{Y}=0.97$
- use ANOVA to evaluate group differences

1-Way ANOVA

Cognitive development study

check constant variance assumption
> bartlett.test(score~grade,df3)
Bartlett test of homogeneity of variances
data: score by grade
Bartlett's K-squared $=6.6227, \mathrm{df}=4, \mathrm{p}$-value $=0.1572$

Do not reject null hypothesis that variances are equal

Cognitive development study

check normality assumption
> shapiro.test(residuals(aov.01)
Shapiro-Wilk normality test
data: residuals(aov.01)
$\mathrm{W}=0.9871, \mathrm{p}$-value $=0.6482$
> qqnorm(residuals(aov.01))
>qqline(residuals(aov.01))

Do not reject null hypothesis that residuals are Normal

Cognitive development study

> load(file=url('http://pnb.mcmaster.ca/bennett/psy710/datasets/contrasts.rda')) $>$ df3\$grade <- factor(df3\$grade,ordered=FALSE)
> options(contrasts=c("contr.sum","contr.poly")) \# IMPORTANT!!
$>$ aov. $01<-$ aov(score~grade,df3)
$>$ anova(aov.01)
Analysis of Variance Table
Response: score
Df Sum Sq Mean $\mathrm{Sq} F$ value $\operatorname{Pr}(>F)$
grade $41361.2340 .31 \quad 2.25780 .07152$
Residuals 7010550.9150 .73
the effect of grade was not significant
do not reject the null hypothesis of no difference among group means

Cognitive development study

estimate power assuming medium effect size ($f=0.25$)
$>$ library(pwr)
$>$ pwr.anova.test(k=5,n=15,
$+\quad \mathrm{f}=0.25$, sig.level $=.05$,
$+\quad$ power=NULL
Balanced 1-way anova power calculation
$k=5$
$\mathrm{n}=15$ $f=0.36$
sig.level $=0.05$
power $=0.35$
NOTE: n is number in each group

Cognitive development study

estimate power assuming $f=0.36$
$>$ library(pwr)
> pwr.anova.test(k=5,n=15,
$+\quad \mathrm{f}=0.36$,sig.level $=.05$
$+\quad$ power=NULL)
Balanced 1-way anova power calculation
$\mathrm{k}=5$
$\mathrm{n}=15$
$f=0.36$
sig.level $=0.05$
power $=0.67$
NOTE: n is number in each group

linear contrasts/comparisons

Cognitive development study

alternatives to ANOVA

> oneway.test(score~grade,data=df3)

1-way analysis of means (not assuming equal variances) data: score and grade
$\mathrm{F}=3$, num $\mathrm{df}=4$, denom $\mathrm{df}=35$, p -value $=0.04$
> kruskal.test(score~grade,data=df3)
Kruskal-Wallis rank sum test
data: score by grade
Kruskal-Wallis chi-squared $=9, d f=4, p$-value $=0.07$

K-W Null Hypothesis

- groups were sampled from the same distribution
- if we assume distributions have same shape \& scale
- then HO is that group medians are equal

Omnibus vs. Focussed F tests

$H 0: \quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{a}=0$
$H 1$:

$$
\alpha_{j} \neq 0
$$

- A significant omnibus F test tests a very general hypothesis
- H0: all group means are equal; H 1 : not all means are equal
- H0: all group effects are zero; H1: not all group effects are zero
- Significant F doesn't tell us how group means differ
- Generality of omnibus F often comes at cost of reduced power

Omnibus vs. Focussed F tests

Omnibus F test is not significant:
$>$ Im. $01<-\operatorname{lm}$ (score~grade,data=df3)
$>$ anova(Im.01)
Analysis of Variance Table
Response: score
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ grade $41361.2340 .31 \quad 2.25780 .07152$ Residuals 7010550.9150 .73

Linear Contrast Example

HO: (means of grades $3,4,5$) = (means of grades 1,2)
H 1 : (means of grades $3,4,5) \neq$ (means of grades 1,2)
$>c 1<-c(-1 / 2,-1 / 2,1 / 3,1 / 3,1 / 3)$ \# (g1 \& g2) vs (g3 \& g4 \& g5) $>c 2<-c(-1,1,0,0,0) \#$ g1 vs g2
$>\mathrm{c} 3<-\mathrm{c}(0,0,-1,1 / 2,1 / 2)$ \# g3 vs (g4 \& g5)
$>c 4<-c(0,0,0,-1,1)$ \# (g4 vs g5)
$>$ contrasts(df3\$grade) <- cbind(c1,c2,c3,c4)
> fractions(contrasts(df3\$grade))
c1 c2 c3 c4
$\begin{array}{llll}\text { g1-1/2 } & -1 & 0 & 0\end{array}$
g2-1/2 100
$\begin{array}{lllll}\text { g3 } & 1 / 3 & 0 & -1 & 0\end{array}$
$\begin{array}{llllll}\text { g4 } & 1 / 3 & 0 & 1 / 2 & -1\end{array}$
$\begin{array}{lllll}\text { g5 } & 1 / 3 & 0 & 1 / 2 & 1\end{array}$

focussed tests provide more power
linear contrasts often more appropriate \& more powerful

Linear Contrast Example

HO: (means of grades 3,4,5) = (means of grades 1,2)
H1: (means of grades $3,4,5$) \neq (means of grades 1,2)
> aov. 02 <- aov(score~grade,data=df3)
> summary(aov.02,
$+\quad$ split=list(grade=list(c1=1,c2=2,c3=3,c4=4)))
Df SS MS F $\operatorname{Pr}(>F)$
grade $\begin{array}{llllll} & 1361 & 340.3 & 2.258 & 0.0715\end{array}$
grade: c1 $1 \quad 753752.94 .9950 .029$ *
$\begin{array}{llllll}\text { grade: } c 2-c 4 & 3 & 608 & 202.7 & 1.345 & 0.269\end{array}$
Residuals 7010551150.7

Trend Analysis Example

linear contrasts can be more powerful \& more appropriate tests of null hypothesis

HO: linear trend of score across grade $=0$ H 1 : linear trend of score across grade $\neq 0$

Lin Quad Cubic Quartic [g1]-0.632 0.535-3.16e-01 0.120 [g2] -0.316-0.267 6.32e-01 -0.478 g3] $0.000-0.535-4.10 \mathrm{e}-160.717$ g4] $0.316-0.267-6.32 \mathrm{e}-01-0.478$ [g3] $0.6320 .5353 .16 \mathrm{e}-01 \quad 0.120$

Linear Contrasts (Comparisons)

- Contrasts allow us to evaluate focussed hypotheses
- evaluate specific pattern of differences among group means
- Each contrast is defined by a set of contrast weights
- weights ($c_{1}, c_{2}, \ldots c_{a}$) specify a pattern of group means
- value of contrast, ψ, is a weighted combination of group means
- $\psi=c_{1} \bar{Y}_{1}+c_{2} \bar{Y}_{2}+c_{3} \bar{Y}_{3}+c_{4} \bar{Y}_{4}+\ldots c_{a} \bar{Y}_{a}$

Trend Analysis Example

linear contrasts can be more powerful \& more appropriate tests of null hypothesis
HO: linear trend of score across grade $=0$
H 1 : linear trend of score across grade $\neq 0$
> summary(aov.trends,
$+\quad$ split=list(grade=list(Lin=1,NonLin=2:4)))
Df SS MS F $\quad \operatorname{Pr}(>F)$ $\begin{array}{llllll}\text { grade } & 4 & 1361 & 340.3 & 2.258 & 0.07152\end{array}$ grade: Lin $\quad \begin{array}{llllll}1 & 1270 & 1269.9 & 8.425 & 0.00495^{* *}\end{array}$ $\begin{array}{llllll}\text { grade: NonLin } 3 & 91 & 30.5 & 0.202 & 0.89460\end{array}$
Residuals 7010551150.7

Hypotheses tested with Linear Contrasts

- Linear contrasts are defined by weights
- must sum to zero
- $\operatorname{sum}(1 / 2,1 / 2,-1 / 3,-1 / 3,-1 / 3)=0$
- Multiplying weights by constant produces an equivalent linear contrast
- $w_{1}=(1 / 2,1 / 2,-1 / 3,-1 / 3,-1 / 3)$
$-w_{2}=6 \times w_{1}=(3,3,-2,-2,-2)$
- W_{1} is equivalent to w_{2}

$$
\begin{gathered}
\text { contrast weights } \\
H 0: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}=0 \\
H 1: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \neq 0
\end{gathered}
$$

[^0]
Contrasts are defined by weights

each contrast sums to zero!
$>$ myC1 <-c(-1/2,-1/2,1/3, $1 / 3,1 / 3$) \# (grades 1,2) vs (grades $3,4,5$ $>$ myC2 $<-c(-1,1,0,0,0)$ \# (grade 1) vs (grade 2)
$>$ myC3 <-c(0,0,-1,1/2,1/2) \# (grade 3) vs (grades 4,5)
$>$ myC4 <-c $(0,0,0,-1,1)$ \# (grade 4) vs (grade 5)
> cMat <- cbind(myC1, myC2, myC3, myC4)
$>$ fractions(cMat) \# fractions() in MASS library
myC1 myC2 myC3 myC4
$[1]-,1 / 2-1 \quad 0 \quad 0$
$[2]-,1 / 2 \quad 1 \quad 0 \quad 0$

$\begin{array}{llllll}{[4,]} & 1 / 3 & 0 & 1 / 2 & -1\end{array}$
$\begin{array}{lllll}{[5,]} & 1 / 3 & 0 & 1 / 2 & 1\end{array}$

Hypotheses Evaluated by a Contrast

> my.weights <-c $(-1,-1,-1,-1,-1,-1,6)$
HO:
$-1\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}\right)+6 \mu_{7}=0$ $\mu_{7}=\frac{1}{6}\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}\right)$

H1:

$$
\mu_{7} \neq \frac{1}{6}\left(\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}\right)
$$

Hypotheses Evaluated by a Contrast

$>$ my.weights $0<-c(3,3,-2,-2,-2)$ N.B. my.weights0 is equivalent to $c(1 / 2,1 / 2,-1 / 3,-1 / 3,-1 / 3)$

$$
\text { H0: } \begin{aligned}
& 3 \mu_{1}+3 \mu_{2}-2 \mu_{3}-2 \mu_{4}-2 \mu_{5}=0 \\
& 3\left(\mu_{1}+\mu_{2}\right)-2\left(\mu_{3}+\mu_{4}+\mu_{5}\right)=0 \\
& 3\left(\mu_{1}+\mu_{2}\right)=2\left(\mu_{3}+\mu_{4}+\mu_{5}\right) \\
& 3 \frac{\left(\mu_{1}+\mu_{2}\right)}{2}=\left(\mu_{3}+\mu_{4}+\mu_{5}\right) \\
& \frac{\left(\mu_{1}+\mu_{2}\right)}{2}=\frac{\left(\mu_{3}+\mu_{4}+\mu_{5}\right)}{3}
\end{aligned}
$$

Hypotheses Evaluated by a Contrast

$>w 1<-c(-2,-2,0,1,1,1,1)$
$>(w 2<-w 1 / 4)$
[1]-1/2-1/2 0 1/4 $1 / 41 / 41 / 4$
$>\# \operatorname{sum}(\mathrm{w} 1)=\operatorname{sum}(\mathrm{w} 2)=0$
HO: $\frac{-1}{2}\left(\mu_{1}+\mu_{2}\right)+0 \times \mu_{3}+\frac{1}{4}\left(\mu_{4}+\mu_{5}+\mu_{6}+\mu_{7}\right)=0$

$$
\frac{\left(\mu_{4}+\mu_{5}+\mu_{6}+\mu_{7}\right)}{4}=\frac{\left(\mu_{1}+\mu_{2}\right)}{2}
$$

H1: $\frac{\left(\mu_{4}+\mu_{5}+\mu_{6}+\mu_{7}\right)}{4}-\frac{\left(\mu_{1}+\mu_{2}\right)}{2} \neq 0$

$\frac{\left(\mu_{4}+\mu_{5}+\mu_{6}+\mu_{7}\right)}{4} \neq \frac{\left(\mu_{1}+\mu_{2}\right)}{2}$

Hypotheses Evaluated by a Contrast

$>$ my.weights $0<-c(3,0,-1,-1,-1)$

$$
\mathrm{HO}: \begin{aligned}
& 3 \mu_{1}-0 \mu_{2}-1 \mu_{3}-1 \mu_{4}-1 \mu_{5}=0 \\
& 3 \mu_{1}-1\left(\mu_{3}+\mu_{4}+\mu_{5}\right)=0 \\
& \\
& 3 \mu_{1}=1\left(\mu_{3}+\mu_{4}+\mu_{5}\right) \\
& \\
& \\
& \mu_{1}=\frac{1}{3}\left(\mu_{3}+\mu_{4}+\mu_{5}\right)
\end{aligned}
$$

H1: $\quad \mu_{1} \neq \frac{1}{3}\left(\mu_{3}+\mu_{4}+\mu_{5}\right)$
$>$ w2 <-c(1,0,-1/3,-1/3,-1/3) \# my.weights0 / 3

Hypotheses tested with Linear Contrasts

2-tailed tests
$H 0: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}=0$
$H 1: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \neq 0$
$H 0: \frac{\mu_{1}+\mu_{2}}{2}=\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$

$H 1: \frac{\mu_{1}+\mu_{2}}{2} \neq \frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$$\quad$| $H 0: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \geq 0$ |
| :---: |
| $H 1: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}<0$ |
| $H 0: \frac{\mu_{1}+\mu_{2}}{2} \geq \frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ |
| $H 1: \frac{\mu_{1}+\mu_{2}}{2}<\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ |

General Form of Linear Contrast

H0 : $c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{a} \mu_{a}=\Psi=0 \quad$ weighted sum of population means equals zero

$$
\sum_{j=1}^{a} c_{j}=0 \quad \text { sum of weights must equal zero }
$$

$\mathrm{SS}_{\text {contrast }}=\mathrm{MS}_{\text {contrast }}$

$$
\hat{\Psi}=\sum_{j=1}^{a}\left(c_{j} \bar{Y}_{j}\right) \quad \text { value of contrast equals weighted sum of group means }
$$

Evaluate comparison with F
$F=\frac{\left(\Psi^{2}\right) / \sum_{j=1}^{a}\left(c_{j}^{2} / n_{j}\right)}{\mathrm{MS}_{W}}$

$$
F=\frac{\left(n \Psi^{2}\right) / \sum_{j=1}^{a}\left(c_{j}^{2}\right)}{\mathrm{MS}_{W}}
$$

$\mathrm{df}=(1, \mathrm{~N}-\mathrm{a})$
With equal n per group:

General Form of Linear Contrast

(directional tests evaluated with t statistic)

$$
\begin{aligned}
& \hat{\Psi}=\sum_{j=1}^{a}\left(c_{j} \bar{Y}_{j}\right) \\
& F=\frac{\left(\Psi^{2}\right) / \sum_{j=1}^{a}\left(c_{j}^{2} / n_{j}\right)}{\mathrm{MS}_{W}} \\
& t=\frac{\Psi / \sqrt{\sum_{j=1}^{a}\left(c_{j}^{2} / n_{j}\right)}}{\sqrt{\mathrm{MS}_{W}}} \quad \mathrm{df}=\mathrm{N}-\mathrm{a} \\
& t^{2}
\end{aligned}
$$

t statistic more useful for 1-tailed test
$H 0: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \geq 0$
$H 1: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}<0$
$H 0: \frac{\mu_{1}+\mu_{2}}{2} \geq \frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$
$H 1: \frac{\mu_{1}+\mu_{2}}{2}<\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$

General Form of Linear Contrast

(the sign of the weights determines the direction of the test)
t statistic: the sign of weights matters!
$\mathrm{w}=[1 / 2,1 / 2,-1 / 3,-1 / 3,-1 / 3]$
$H 0: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \geq 0$

$H 1: \frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5}<0$$\quad$| t statistic: the sign of weights matters! |
| :---: |
| $\mathrm{w}=[-1 / 2,-1 / 2,1 / 3,1 / 3,1 / 3]$ |\quad| $H 0: \frac{-1}{2} \mu_{1}+\frac{-1}{2} \mu_{2}+\frac{1}{3} \mu_{3}+\frac{1}{3} \mu_{4}+\frac{1}{3} \mu_{5} \leq 0$ |
| :---: |
| $H 1: \frac{-1}{2} \mu_{1}+\frac{-1}{2} \mu_{2}+\frac{1}{3} \mu_{3}+\frac{1}{3} \mu_{4}+\frac{1}{3} \mu_{5}>0$ |

$$
\begin{array}{l|l}
H 0: \frac{\mu_{1}+\mu_{2}}{2} \geq \frac{\mu_{3}+\mu_{4}+\mu_{5}}{3} & H 0: \frac{\mu_{3}+\mu_{4}+\mu_{5}}{3} \leq \frac{\mu_{1}+\mu_{2}}{2} \\
\hline H 1: \frac{\mu_{1}+\mu_{2}}{2}<\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3} & \text { equivalent! }
\end{array}
$$

Conducting Contrasts with R aov()

$>$ contrasts(df3\$grade) <- cMat
$>$ fractions(contrasts(df3\$grade))
myC1 myC2 myC3 myC4
g1-1/2 -1 0
$\begin{array}{llll}g 2 & -1 / 2 & 1 & 0\end{array}$
$\begin{array}{lllll}\text { g3 } & 1 / 3 & 0 & -1 & 0\end{array}$
$\begin{array}{lllll}\text { g4 } & 1 / 3 & 0 & 1 / 2 & -\end{array}$
$\begin{array}{llll}g 5 & 1 / 3 & 0 & 1 / 2\end{array}$
$>$ aov. 02 <- aov(score~grade,data=df3) Perform ANOVA with aov

Store contrast weights as columns in a matrix \& then assig contrast weights to grouping variable

calculating contrasts with aov \& emmeans

Conducting Contrasts with R aov()

> aov. 02 <- aov(score~grade,data=df3)
> summary(aov.02,
$+\quad$ split=list(grade=list(c1=1,c2=2,c3=3,c4=4)))
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
grade $\begin{array}{llll}4 & 1361 & 340.3 & 2.258 \\ 0.0715\end{array}$
grade: c1 $1 \quad 753752.94 .9950 .0286$
$\begin{array}{lllll}\text { grade: } \mathrm{c} 2 & 1 & 251 & 250.6 & 1.662 \\ 0.2015\end{array}$
grade: c3 $1 \begin{array}{llllll} & 210 & 210.5 & 1.396 & 0.2413\end{array}$
$\begin{array}{llllll}\text { grade: c4 } & 1 & 147 & 147.3 & 0.977 & 0.3262\end{array}$
Residuals 7010551150.7

Write ANOVA table with summary(), but split results for grouping variable into separate lines for different contrasts split $=$ list(factor.name $=$ list(contrast.name. $1=1$, contrast.name.2=2,...))

Conducting Contrasts with emmeans

emmeans = estimated marginal means Very statisticious: Getting started with emmeans

> \# create emmeans object

$>$ library(emmeans)
$>$ aov. 01 <- aov(score~grade,data=df3)
> aov.em <- emmeans(aov.01,specs="grade") (specs is the factor being analyzed) $>$ aov.em
grade emmean SE df lower.CL upper.CL
$\begin{array}{llll}\text { g1 } & 91.3 & 3.1770 & 85.0 \\ 97.6\end{array}$
$\begin{array}{lllll}\text { g2 } & 97.13 .1770 & 90.8 & 103.4\end{array}$
$\begin{array}{lllll}\text { g3 } & 97.63 .1770 & 91.3 & 103.9\end{array}$
(Estimated Marginal Means)
$\begin{array}{lllll}\text { g4 } & 100.0 & 3.1770 & 93.7 & 106.3\end{array}$
$\begin{array}{lllll}\text { g5 } & 104.43 .17 & 70 & 98.1 & 110.7\end{array}$
Confidence level used: 0.95

Conducting Contrasts with emmeans

emmeans = estimated marginal means
Very statisticious: Getting started with emmeans

```
> myContrasts <- list(c1=myC1
ll
> contrast(aov.em,
+ method=myContrasts,
+ adjust="none")
```

contrast estimate SE df t.ratio p.value
c1 SE df t.ratio p.value
$\begin{array}{lllll}\text { c1 } & & 6.472 .8970 & 2.235 & 0.0286 \\ \text { c2 } & 5.784 .4870 & 1.289 & 0.2015\end{array}$
c3 $\quad 4.593 .88701 .182 \quad 0.2413$
c4 $\quad 4.434 .48700 .989 \quad 0.3262$

Conducting Contrasts with linear.comparison

linear.comparison() \& emmeans() yield same results
> source(url("http://pnb.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))
[1] "loading function linear.comparison"
$>\mathrm{y}<-\mathrm{df} 3 \$$ score
$>\mathrm{g}<-\mathrm{df} 3 \$$ grade
> myContrast1 <- linear.comparison(y,g,c.weights = myContrasts,var.equal=T)
[1] "computing linear comparisons assuming equal variances among groups"
[1] "C 1: $\mathrm{F}=4.995, \mathrm{t}=2.235, \mathrm{p}=0.029$, $\mathrm{psi}=6.467, \mathrm{Cl}=(0.367,12.568)$, adj. $\mathrm{Cl}=(-0.952,13.887)$ "
[1] "C 2: $\mathrm{F}=1.662, \mathrm{t}=1.289, \mathrm{p}=0.202, \mathrm{psi}=5.780, \mathrm{Cl}=(-4.615,16.175)$, adj. $\mathrm{Cl}=(-5.714,17.274)$ "
[1] "C 3: $\mathrm{F}=1.396, \mathrm{t}=1.182, \mathrm{p}=0.241, \mathrm{psi}=4.588, \mathrm{Cl}=(-2.544,11.719)$, adj. $\mathrm{Cl}=(-5.366,14.542)$ "
[1] "C 4: $\mathrm{F}=0.977, \mathrm{t}=0.989, \mathrm{p}=0.326, \mathrm{psi}=4.432, \mathrm{Cl}=(-2.955,11.819)$, adj. $\mathrm{Cl}=(-7.062,15.926)$ "
trend analysis

Trend Analysis

trends are linear contrasts

- the analysis of trends uses the same methods as linear contrasts
- weights are designed to evaluate specific differences across groups:
- linear, quadratic, cubic, etc.
- weights must sum to zero
- weights can be calculated using R's contr.poly function
- useful when differences between levels on group variable are not constant

$>$ contr.poly $(\mathrm{n}=5$, scores $=\mathrm{c}(8,9,10,11,12)$) $\begin{array}{cc}. L & \text { Q } \\ {[1,]-0.6324555} & 0.53\end{array}$ Q .C .C ${ }^{\wedge} 4$ $\begin{array}{llllll}{[1,]} & -0.6324555 & 0.5345225 & -3.162278 \mathrm{e}-01 & 0.1195229 \\ {[2,]-0.3162278} & -0.2672612 & 6.324555 & -01 & -0.4789 & \end{array}$ $[2]-0.3162278-,0.26726126 .324555 e-01-0.4780914$ | $[3]$, | | | |
| :--- | :--- | :--- | :--- |
| $[4]$, | 0.0000000 | -0.5162278 | -0.2672612 |
| | -6.3245555 | -016 | -0.71780914 | $\begin{array}{lllll}{[4,]} & 0.3162278 & -0.2672612 & -6.324555 e-01 & -0.4780914 \\ {[5,]} & 0.6324555 & 0.5345225 & 3.162278 e-01 & 0.1195229\end{array}$

$>$ contr.poly($\mathrm{n}=5$, scores $=\mathrm{c}(8,9,10,12,15$)) L $\quad \mathrm{Q} \quad . \quad \mathrm{C}$ ^4 [1,] -0.5045250 0.54194676-0.4466312 0.22862383 [2,] $-0.3243375-0.012903490 .4344281-0.71127414$ $[3]-0.1441500-,0.387104830 .46859660 .64014672$ [4,] 0.2162250-0.59356074-0.6077113-0.17781853 $[5]$,

Trend Analysis Example

\# set polynomial contrasts as default for ordered factors:
> options(contrasts=c("contr.sum","contr.poly")
$>$ load(file=url('http://pnb.mcmaster.ca/bennett/psy710/labs/L3/hw3-2021.rda')) > sapply(df3,class)

\$grade

1] "ordered" "factor"
\$score
[1] "numeric"
> contrasts(df3\$grade)
.L .Q .C ^4 g1-0.63 $0.53-0.32 \quad 0.12$ g2 -0.32-0.27 $0.63-0.48$ g3 $0.00-0.530 .00 \quad 0.72$ g4 0.32-0.27-0.63-0.48 $\begin{array}{llllllllllllll}\text { g5 } & 0.63 & 0.53 & 0.32 & 0.12\end{array}$

Trend weights are orthogonal > polyWeights <- contr.poly(n=5 $>$ round(cor(polyWeights),digits=2)

$$
\begin{array}{llll}
. L & . Q & . C & \wedge 4
\end{array}
$$

$$
\begin{array}{lllll}
\mathrm{L} & 1.00 & 0.00 & 0.00 & 0.00
\end{array}
$$

$$
\begin{array}{lllll}
\hline \text { L } & 1.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0.00 & 1.00 & 0.00 & 0.00
\end{array}
$$

$$
\begin{array}{llllll}
\text { C } & 0.00 & 0.00 & 1.00 & 0.00
\end{array}
$$

140.000 .000 .001 .00

Trend Analysis Example

trends are linear contrasts
> contrasts(df3\$grade) <- contr.poly($\mathrm{n}=5$,scores=1:5)
> aov.trends <- aov(score~grade,data=df3)
> summary(aov.trends,

HO \& H1 defined by trend weights:
$\mathrm{H} 0:-0.63 \mu_{1}-0.32 \mu_{2}+0.32 \mu_{4}+0.63 \mu_{5}=0$
H1 : $-0.63 \mu_{1}-0.32 \mu_{2}+0.32 \mu_{4}+0.63 \mu_{5} \neq 0$

Trend Analysis Example

trends are linear contrasts

> coef(aov.trends)
(Intercept) grade.L grade.Q grade.C grade^4 $\begin{array}{lllll}98.08 & 9.20 & -0.23 & 2.32 & -0.83\end{array}$
$>$ wLin <- c($-0.63,-0.32,0,0.32,0.63$) \# linear trend weights
$>$ gradeMean <- with(df3,tapply(score,grade,mean)) \# group means $>$ gNumber <- seq(1:5)
$>\operatorname{plot}(x=g$ Number,
$y=98.08+9.20^{*}$ wLin, $\quad \#$ line defined by intercept \&
linear trend coefficient
ylim=c(85,110),
xlab="grade",
ylab="score")
$>$ points($\mathrm{x}=\mathrm{gNumber}$,
intercept determines height
grade.L coefficient \& trend weights determine slope
 $y=$ gradeMean,
$\mathrm{pch}=19, \mathrm{cex}=2$)

Trend Analysis Example

trends are linear contrasts
> \# emmeans poly method uses polynomial contrasts
>\# and assumes equally-spaced levels on grouping factor
> \# ?poly.emmc for details
> aov.01.em <- emmeans(aov.01,specs="grade")
> contrast(aov.01.em,method="poly")
contrast estimate SE df t.ratio p.value $\begin{array}{llllllll}\text { linear } & 29.096 & 10.0 & 70 & 2.903 & 0.0049\end{array}$ quadratic $-0.84311 .9 \quad 70-0.071 \quad 0.9435$ $\begin{array}{lllllllll}\text { cubic } & 7.321 & 10.0 & 70 & 0.730 & 0.4676\end{array}$ $\begin{array}{llllll}\text { quartic } & -6.907 & 26.5 & 70 & -0.260 & 0.7953\end{array}$

Trend Analysis Example

trends are linear contrasts
Can evaluate all higher-order, nonlinear trends with a single F test
> summary(aov.trends,
$+\quad$ split=list(grade=list(Lin=1,NonLin=2:4)))

	Df	SS	MS	F	$\operatorname{Pr}(>F)$
grade	4	1361	340.3	2.258	0.07152
grade: Lin	1	1270	1269.9	8.425	$0.00495^{* *}$
grade: NonLin	3	91	30.5	0.202	0.89460

Effect Size for a Linear Comparison
linear contrasts are used to compare two weighted means, so Cohen's d is approprate

Cohen's d (for a contrast)

$$
\begin{array}{r}
d=2 \Psi /\left(\sigma_{e}\left[\sum_{j=1}^{a}\left|c_{j}\right|\right]\right) \\
d=2 \hat{\Psi} /\left(\sqrt{\mathrm{MS}_{W}}\left[\sum_{j=1}^{a}\left|c_{j}\right|\right]\right)
\end{array}
$$

Expresses Ψ in terms of the number of standard deviations of population error distribution

Effect Size

Cohen's d calculation with emmeans \& linear.comparison
$>$ library(emmeans)
$>$ aov. $01<-$ aov(score~grade,data=df3)
> sigma <- sigma(aov.01) \# sqrt(MS.resid)
> edf <- df.residual(aov.01) \# residual df
> aov.em <- emmeans(aov.01,specs="grade")
> myContrasts <- list(c1=myC1,c2=myC2,c3=myC3,c4=myC4)
> \# calculate Cohen's d for each contrast:
> eff_size(aov.em,sigma,edf,method=myContrasts)
contrast effect.size SE df lower.CL upper.CL

c1	0.53	0.24	70	0.05	1.01
c2	0.47	0.37	70	-0.26	1.20
c3	0.37	0.32	70	-0.26	1.01

$\begin{array}{lllll}0.37 & 0.32 & 70 & -0.26 & 1.0\end{array}$
$\begin{array}{llllll}\text { c4 } & 0.36 & 0.37 & 70 & -0.37 & 1.09\end{array}$

Effect Size

Cohen's d calculation with emmeans \& linear.comparison
$>y<-$ df3\$score
$>\mathrm{g}<-\mathrm{df} 3 \$$ grade
$>$ myContrast $<$ - linear.comparison(y,g,c.weights = myContrasts,var.equal=T
[] "computing linear comparisons assuming equal variances among groups"
[1] "C 1: F=4.995, t=2.235, p=0.029, psi=6.467, Cl=(0.367,12.568), adj.Cl= (-0.952,13.887)"
[1] "C 2: F=1.662, t=1.289, p=0.202, psi=5.780, Cl=(-4.615,16.175), adj.Cl= $(-5.714,17.274)^{\prime \prime}$
1] "C 3: $\mathrm{F}=1.396, \mathrm{t}=1.182, \mathrm{p}=0.241, \mathrm{psi}=4.588, \mathrm{Cl}=(-2.544,11.719)$, adj.Cl= $(-5.366,14.542)$ "
11] "C 4: $\mathrm{F}=0.977, \mathrm{t}=0.989, \mathrm{p}=0.326, \mathrm{psi}=4.432, \mathrm{Cl}=(-2.955,11.819)$, adj. $\mathrm{Cl}=(-7.062,15.926)$ "
> myContrast1[[1]]\$d.effect.size
[1] 0.53
> myContrast1[[2]]\$d.effect.size \quad Note double brackets [[x]]!
[1] 0.47
> myContrast1[[3]]\$d.effect.size
[1] 0.37
> myContrast1 [[4]]\$d.effect.size
[1] 0.36

unequal variances

Unequal Group Variances

- So far our tests assume equal variance in different groups
- F/t tests for contrasts are not robust to violation of equal variance assumption
- When groups have unequal variances, use a different method to calculate F / t denominator, which is an estimate of population error variance
- Correcting for unequal var reduces denominator df (and, hence, power)

$$
F=\frac{\left(\Psi^{2}\right) / \sum_{j=1}^{a}\left(c_{j} / n_{j}\right)}{\sum_{j=1}^{a}\left[\left(c_{j}^{2} / n_{j}\right) s_{j}^{2}\right] / \sum_{j=1}^{a}\left(c_{j}^{2} / n_{j}\right)} \quad d f=\frac{\left[\sum_{j=1}^{a}\left(c_{j}^{2} s_{j}^{2} / n_{j}\right)\right]^{2}}{\sum_{j=1}^{a}\left[\left(c_{j}^{2} s_{j}^{2} / n_{j}\right)^{2} /\left(n_{j}-1\right)\right]}
$$

Contrasts with unequal variances

linear.comparison() can correct for unequal variances
> myContrast2 <- linear.comparison(y,g,c.weights = myContrasts,var.equal=F)
[1] "computing linear comparisons assuming unequal variances among groups"
[1] "C 1: $\mathrm{F}=4.471, \mathrm{t}=2.114, \mathrm{p}=0.041, \mathrm{psi}=6.467, \mathrm{Cl}=(0.289,12.646)$, adj. $\mathrm{Cl}=(-1.526,14.461)$ "
[1] "C 2: $\mathrm{F}=1.230, \mathrm{t}=1.109, \mathrm{p}=0.279, \mathrm{psi}=5.780, \mathrm{Cl}=(-4.996,16.556)$, adj. $\mathrm{Cl}=(-8.331,19.892)$ "
[1] "C 3: $\mathrm{F}=1.646, \mathrm{t}=1.283, \mathrm{p}=0.211, \mathrm{psi}=4.588, \mathrm{Cl}=(-2.785,11.960)$, adj. $\mathrm{Cl}=(-5.053,14.228)$ "
[1] "C 4: $\mathrm{F}=1.432, \mathrm{t}=1.197, \mathrm{p}=0.242, \mathrm{psi}=4.432, \mathrm{Cl}=(-3.164,12.028)$, adj. $\mathrm{Cl}=(-5.473,14.337)$ "
orthogonal contrasts

Orthogonal Contrasts

$$
\begin{array}{ll}
\text { Equal n: } & \text { Unequal n: } \\
\sum_{j=1}^{a}\left(c_{1 j} c_{2 j}\right)=0 & \sum_{j=1}^{a}\left(c_{1 j} c_{2 j} / n_{j}\right)=0
\end{array}
$$

A set of contrasts is mutually orthogonal if all pairs of contrasts are orthogonal
Orthogonal contrasts evaluate independent questions about group means

Complete set of orthogonal contrasts

breaks $\mathrm{SS}_{\text {group }}$ into separate pieces
> cMat <- contrasts(df3\$grade)
$>$ fractions(cMat)
myC1 myC2 myC3 myC4
g1-1/2 -1 0
g2-1/2 1 0
$\begin{array}{lllll}\text { g3 } & 1 / 3 & 0 & -1 & 0\end{array}$
$\begin{array}{lllll}g 4 & 1 / 3 & 0 & 1 / 2 & -1\end{array}$
$\begin{array}{lllll}g 5 & 1 / 3 & 0 & 1 / 2 & 1\end{array}$
> \# these contrasts/columns are mutually orthogonal:
$>$ round(t(cMat) \%*\% cMat,digits=2)
$\mathrm{myC} 1 \mathrm{myC} 2 \mathrm{myC3} \mathrm{myC} 4$
myC1 $0.83 \quad 00.0 \quad 0$
myC2 $0.00 \quad 20.0 \quad 0 \quad$ N.B. Each element in this matrix
$\begin{array}{lllll}\text { myC3 } 0.00 & 0 & 1.5 & 0 & \text { is the sum of cross-products. }\end{array}$
myC4 $0.00 \quad 0 \quad 0.0 \quad 2$

Complete Set of Mutually Orthogonal Contrasts

If there are a groups, then the largest set of mutually orthogonal contrasts will have ($a-1$) contrasts, and:

$$
\sum_{j=1}^{a-1} \mathrm{SS}_{\text {contrast }, j}=\mathrm{SS}_{B}
$$

- A complete set of orthogonal contrasts divides SS_{B} into independent pieces of variation, the sum of the ($a-1$) SS $_{\text {contrasts }}$ will equal SS $_{B}$,
- and the average of the contrast F values will equal the omnibus F.

Complete set of orthogonal contrasts

breaks $\mathrm{SS}_{\text {group }}$ into separate pieces
$>$ aov. 10 <- aov(score~grade,data=df3)
CMat <- contrasts(df3\$grade)
fractions(cMat)
myC1 myC2 myC3 myC4
$\begin{array}{lllll}\mathrm{g} 1-1 / 2 & -1 & 0 & 0\end{array}$
g2-1/2 1
$\begin{array}{lllll}\text { g3 } & 1 / 3 & 0 & -1 & 0\end{array}$
$\begin{array}{llllll}\mathrm{g} & 1 / 3 & 0 & 1 / 2 & -1 \\ 55 & 1 / 3 & 0 & 1 / 2 & 1\end{array}$
$\begin{array}{lllll}\text { g5 } & 1 / 3 & 0 & 1 / 2 & 1 \\ >\# \text { \# these contrasts/columns are mutually orthogona }\end{array}$
$>$ round(t(cMat) $\%$ \% cMat, digits=2)
myC1 myC2 myCz myC
myC1 $0.83 \quad 0 \quad 0.0 \quad 0$
myC2 $0.00 \quad 20.0$
myC3 $0.00 \quad 0 \quad 1.5$
myC4 $0.00 \quad 0 \quad 0.0 \quad 2$

```
> summary(aov.10,
```

split=list(grade=list(myC1=1,myC2=2,myC3=3,myC4=4)))
Df SS MS F $\quad \operatorname{Pr}(>F)$
grade $\quad 4 \quad 1361 \quad 340.32 .2580 .0715$

| grade: $\mathrm{myC1}$ | 1 | 753 | 752.9 | 4.995 | 0.0286 * |
| :--- | :--- | :--- | :--- | :--- | :--- | grade: myC2 1 grade: myC3 1 | grade: $\mathrm{myC4}$ | 1 | 147 | 147.3 | 0.977 | 0.3262 |
| :--- | :--- | :--- | :--- | :--- | :--- | Residuals 7010551150.7

$$
S S_{\text {grade }}=1361=753+251+210+147
$$

$F_{\text {grade }}=2.258=(4.995+1.662+1.396+0.977) \div 4$
multiple comparisons

Controlling False Discovery Rate

- Instead of controlling α_{FW}, control False Discovery Rate (FDR):
- Q = (\# of false H0 rejections) / (total \# H0 rejections)
- FDR = Expected Value[Q]
- When all HO are true, controlling α_{FW} and FDR are equivalent
- When some H0 are false, FDR-based methods are more powerful

Multiple Comparisons of Group Means

$P\left(\right.$ at least one Type I error) $=\alpha_{F W}=1-\left(1-\alpha_{P C}\right)^{C}$
if $\alpha_{\mathrm{PC}}=0.05$ and $\mathrm{C}=100$, then $\alpha_{\mathrm{FW}}=0.994$

- Multiple comparisons inflate Type I error rate
- Generally want to control family-wise Type I error rate by adjusting the per-comparison Type I error rate
- for $\mathrm{C}=100$ comparisons

- if $\alpha_{\mathrm{PC}}=.00051$, then $\alpha_{\mathrm{FW}} \leq .05$
- there are several methods for adjusting $\alpha_{P C}$

Corrections for Multiple Comparisons

- Controlling α_{FW} by adjusting α_{PC} :
- Bonferroni Adjustment (aka Dunn's Procedure)
- Holm's Sequential Bonferroni Test
- Controlling False Discovery Rate (FDR):
- Benjamini \& Hochberg's (1995) Linear Step-Up Procedure (FDR)
- Relative Power: FDR > Holm's > Bonferroni

Multiple Comparisons in R

adjust p values with p.adjust()
> my.p.values <- c(.127,.08,. $03, .032, .02, .001, .01, .005, .025)$
> sort(my.p.values)
[1] 0.0010 .0050 .0100 .0200 .0250 .0300 .0320 .0800 .127
> p.adjust(sort(my.p.values),method='bonferroni')
[1] 0.0090 .0450 .0900 .1800 .2250 .2700 .2880 .7201 .000
> p.adjust(sort(my.p.values),method='holm')
[1] 0.0090 .0400 .0700 .1200 .1250 .1250 .1250 .1600 .160
> p.adjust(sort(my.p.values), method='fdr')
[1] 0.0090 .02250 .03000 .041140 .041140 .041140 .041140 .0900 .127
Significant tests (alpha/FDR $=.05$) are highlighted in orange font
N.B. Sorting p-values is not required

Controlling Type I error rate

p.adjust()

	Df	SS	MS	F	$\operatorname{Pr}(>\mathrm{F})$
complexity	4	1.2709	0.3177	6.214	$0.000691^{* * *}$
complexity: L	1	0.7441	0.7441	14.552	0.000532 ***
complexity: Q	1	0.4357	0.4357	8.521	0.006100 **
complexity: C		0.0477	0.0477	0.933	0.340714
complexity: q4		0.0434	0.0434	0.848	0.363286
Residuals 3	35	1.7897	0.0511		

> p.adjust($\mathrm{p}=\mathrm{c}(0.000532,0.006100,0.340714,0.363286)$, method="bonferroni")
[1] 0.0021280 .0244001 .0000001 .000000
> p.adjust(p=c(0.000532,0.006100,0.340714,0.363286),method="holm")
[1] 0.0021280 .0183000 .6814280 .681428
> p.adjust($\mathrm{p}=\mathrm{c}(0.000532,0.006100,0.340714,0.363286$),method="fdr") [1] 0.0021280 .0122000 .3632860 .363286

Controlling Type I error rate

emmeans

> aov.vp <- aov(visPref~complexity,data=df4)
> vp.em <- emmeans(aov.vp,specs="complexity")
> contrast(vp.em,method="poly",adjust="fdr")
contrast estimate SE df t p

quadratic $-0.8730 .29935-2.919 \quad 0.0122$
cubic $\quad-0.244 \quad 0.25335-0.966 \quad 0.3633$
quartic $\quad 0.6160 .669350 .9210 .3633$

P value adjustment: fdr method for 4 tests

Setting family-wise alpha and FDR

- Generally, $\alpha_{\text {Fw }}$ and FDR are set to 0.01 or 0.05
- larger α_{Fw} may be justified for small number of orthogonal comparisons
- Bonferroni \& Holm tests may reduce power too much
- perhaps set $\alpha_{P C}$ to 0.05 or 0.01
- family-wise Type I error will increase but Type II error will decrease
- Note: we do this with factorial ANOVA already...

All pairwise tests (Tukey HSD)

- Tukey HSD evaluates all pairwise differences between groups
- Is more powerful than Bonferroni method (for between-subj designs)
- Tukey HSD:
- NOT necessary to evaluate omnibus F prior to Tukey test
- assumes equal n per group \& equal variances
- Tukey-Kramer is valid with sample sizes are unequal
- Dunnett's T3 test is better with unequal n \& unequal variances [see Kirk (1995, pp. 146-50) for more details]

Tukey HSD (all pairwise differences)

emmeans (assumes equal variances)
> vp.em <- emmeans(aov.vp,specs="complexity")
> contrast(vp.em,method="pairwise",adjust="tukey")
contrast estimate SE df t.ratio p.value
p1-p2 -0.17 0.113 35-1.500 0.5900
p1 - p3 $\quad-0.460 .11335-4.100<.0001$
p1 - p4 $\quad-0.460 .11335-4.000<.0001$
p1-p5 $-0.340 .11335-3.0000 .0400$
p2 - p3 $\quad-0.300 .11335-2.6000 .0900$
p2 - p4 $-0.290 .11335-2.6000 .1000$
p2 - p5 $-0.170 .11335-1.5000 .5600$
p3-p4 0.010 .113350 .0001 .0000
p3-p5 $\quad 0.130 .113351 .1000 .8000$
p4-p5 0.120 .113351 .1000 .8300
P value adjustment: tukey method for comparing a family of 5 estimates

Tukey HSD (all pairwise differences)

optimal method for evaluating all pairwise differences
assumes equal variances
TukeyHSD(aov.vp,which="complexity")
Tukey multiple comparisons of mean
95\% family-wise confidence leve
Fit: aov(formula $=$ visPref \sim complexity, data $=$ df4) \$complexity
diff lwr upr pad
p2-p1 $0.1663-0.1590 .490 .59$ $\begin{array}{llllllllll}\text { p3-p1 } & 0.4620 & 0.137 & 0.79 & 0.00\end{array}$

 p3-p2 $0.2957-0.0290 .620 .09$ p4-p2 $0.2906-0.0350 .620 .10$ p-p2 $0.1706-0.1540 .500 .56$ p4-p3 -0.0051-0.330 $0.32 \quad 1.00$ 5-p3-0.1250-0.450 0.20 0.80 p5-p4-0.1199-0.445 0.21 0.83
does not assume equal variances
$>$ library(PMCMRplus)
> dunnettT3Test(x=di4SVisPref,g=df4Scomplexity)
Pairwise comparisons using Dunnett's $T 3$ test for
atifiple comparisons with unequal variances
data: df4SvisPref and df4\$complexity
$\begin{array}{llll}\text { p1 } & \text { p2 } & \text { p3 } & \text { p4 }\end{array}$
p2 0.8081 -
p3 0.00370 .1934 -
p5 0.08340 .84750 .93210 .9563
Pvalue adjustment method: single-step
alternative hypothesis: two.sided
post-hoc comparisons

Scheffe method

Performing a Single Comparison

After plotting data, I decide to compare
means of groups $4 \& 7$ using a t-test:

Two Sample t-test

data: y. 4 and y. 7
$\mathrm{t}=4.165, \mathrm{df}=18, \mathrm{p}$-value $=0.0005813$
arnative hypothesis: true difference in means is not equal to 0
5 percent confidence interval:
13.84 4.01
mean of x mean of
$111.33 \quad 83.41$

What was wrong with the preceding analyses?

Answer: I performed the analyses after inspecting the data and choosing to compare groups $4 \& 7$ because they looked different which, obviously, inflates Type I error

Performing a Single Comparison

Next I use a linear contrast which uses all groups to derive estimate of error variance:
> my.contrast<-list(c ($0,0,0,1,0,0,-1,0$));
> c.4vs7 <- linear.comparison(y,g,c.weights=my.contrast)

[1] "computing linear comparisons assuming equal variances among groups
[1] "C 1: F=9.915, $\mathrm{t}=3.149, \mathrm{p}=0.002, \mathrm{psi}=27.924, \mathrm{CI}=(14.560,41.287)$, adj. $\mathrm{CI}=(10.245,45.602)$ "

Planned vs. Post-hoc Comparisons

- Previous comparisons were planned
- Last 2 comparisons, made after looking at data, were post-hoc
- Scheffe method is preferred for post-hoc linear contrasts
- compute contrast with normal procedures
- evaluate observed F with new critical value:
- $\mathrm{F}_{\text {Scheffe }}=(\mathrm{a}-1) \times \mathrm{Fa}_{\mathrm{afw}}(\mathrm{df} 1=\mathrm{a}-1 ; \mathrm{df} 2=\mathrm{N}-\mathrm{a})$
- $\mathrm{a}=$ number of groups
- $F_{\alpha(F W)}$ is the F value required for desired alpha
- Fscheffe is "normal" omnibus Fx(a-1)
- alternatively, keep standard F \& adjust p values using Scheffe adjustment
- Scheffe method and omnibus F test are mutually consistent

Scheffe test

for post-hoc comparisons
> (con.poly <- contrast(vp.em,method="poly",adjust="none"))
contrast estimate SE df t.ratio p.value
linear $0.9640 .25335 \quad 3.8150 .0005$
quadratic $-0.8730 .29935-2.9190 .006$
$\begin{array}{llllllllllll}\text { cubic } & -0.244 & 0.253 & 35 & -0.966 & 0.3407\end{array}$
quartic $\quad 0.6160 .669350 .9210 .3633$
>summary(con.poly,adjust="scheffe",scheffe.rank=4)
contrast estimate SE df t.ratio p.value
linear $0.9640 .25335 \quad 3.8150 .0140$
quadratic $-0.8730 .29935-2.9190 .0977$
cubic $\quad-0.2440 .25335-0.9660 .9178$
$\begin{array}{lllllllllll}\text { quartic } & 0.616 & 0.669 & 35 & 0.921 & 0.9300\end{array}$
P value adjustment: scheffe method with rank 4

Scheffe test

for post-hoc comparisons

These methods compute normal F and adjust the value to be consistent with Scheffe method
scheffe.rank should be set to degrees of freedom for grouping factor (i.e., a-1)

[^0]: contrast weights
 $H 0: 3 \mu_{1}+3 \mu_{2}-2 \mu_{3}-2 \mu_{4}-2 \mu_{5}=0$
 $H 1: 3 \mu_{1}+3 \mu_{2}-2 \mu_{3}-2 \mu_{4}-2 \mu_{5} \neq 0$

