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Experimental Design: Blocking
• A study is conducted to measure effect of drug on locomotor activity in 

hyperactive children 

• Between-subjects design: 

- 3 groups differ in drug dosage: zero, low, & high 

• Dependent variable: locomotor activity 

- measured for fixed interval after drug administration 

• Before study, measure baseline locomotor activity in each subject 

- baseline measure used as a blocking variable

Randomized Block Design

Drug Dose

zero low high

Block 
(Baseline 

Locomotor 
Activity)

low 4 4 4

medium 4 4 4

high 4 4 4

very high 4 4 4

- 4 blocks of 12 Ss created using baseline locomotor activity activity measure 
- subjects in each block assigned randomly to drug dose condition

Do blocks differ from each other?
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The variable block is a factor that divides activity into four groups that di↵er in mean
activity: in other words, block is our blocking variable. Next, we create the e↵ects (i.e.,
the alpha’s) associated with each level of the drug and store them in drug.effect. The
variable drug is a factor that indicates the level of drug received by the subjects. Finally,
we create a fake dependent variable y. Notice that y is related linearly to activity, and
is a↵ected by the dosage of the drug.

> options(contrasts=c("contr.sum","contr.poly")) # sum-to-zero definition of factor effects
> set.seed(437);
> activity <- sort(rnorm(n=48,mean=10,sd=3));
> block <- factor(rep(c("low","med","high","very"),each=12),levels=c("low","med","high","very"),ordered=FALSE);
> drug <- factor(rep(c("zero","low","high","high","low","zero"),times=8),levels=c("zero","low","high"),ordered=FALSE)
> drug.effect<-rep(c(-1,0,1,1,0,-1),times=8)
> y <- 1 + 0.6*activity + 1.1*drug.effect + rnorm(activity,mean=0,sd=3);
> theData <- data.frame(y, block,drug,activity,drug.effect)

First, we want to see if our blocking variable really is capturing variability among our
subjects. The next several commands list the mean baseline activity within each block of
subjects and then determines if the blocks di↵er significantly. The blocks do di↵er, so we
succeeded in creating groups in which the between-block di↵erences are large relative to
the within-block di↵erences.

> with(theData, tapply(activity, block,mean));

low med high very

5.153699 8.007714 10.287328 13.818771

> summary(aov(activity ~ block, data=theData) );

Df Sum Sq Mean Sq F value Pr(>F)

block 3 483.1 161.02 106.3 <2e-16 ***

Residuals 44 66.6 1.51

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we evaluate two nested linear models: The first model does not include our blocking
factor, but the second one does.

> aov.1<-aov(y~drug,data=theData)

> aov.2<-aov(y~block+drug+block:drug,data=theData)

> summary(aov.1)

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 37.1 18.539 2.173 0.126

Residuals 45 384.0 8.532
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Effect of blocking factor on SSresiduals
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The variable block is a factor that divides activity into four groups that di↵er in mean
activity: in other words, block is our blocking variable. Next, we create the e↵ects (i.e.,
the alpha’s) associated with each level of the drug and store them in drug.effect. The
variable drug is a factor that indicates the level of drug received by the subjects. Finally,
we create a fake dependent variable y. Notice that y is related linearly to activity, and
is a↵ected by the dosage of the drug.

> options(contrasts=c("contr.sum","contr.poly")) # sum-to-zero definition of factor effects
> set.seed(437);
> activity <- sort(rnorm(n=48,mean=10,sd=3));
> block <- factor(rep(c("low","med","high","very"),each=12),levels=c("low","med","high","very"),ordered=FALSE);
> drug <- factor(rep(c("zero","low","high","high","low","zero"),times=8),levels=c("zero","low","high"),ordered=FALSE)
> drug.effect<-rep(c(-1,0,1,1,0,-1),times=8)
> y <- 1 + 0.6*activity + 1.1*drug.effect + rnorm(activity,mean=0,sd=3);
> theData <- data.frame(y, block,drug,activity,drug.effect)

First, we want to see if our blocking variable really is capturing variability among our
subjects. The next several commands list the mean baseline activity within each block of
subjects and then determines if the blocks di↵er significantly. The blocks do di↵er, so we
succeeded in creating groups in which the between-block di↵erences are large relative to
the within-block di↵erences.

> with(theData, tapply(activity, block,mean));

low med high very

5.153699 8.007714 10.287328 13.818771

> summary(aov(activity ~ block, data=theData) );

Df Sum Sq Mean Sq F value Pr(>F)

block 3 483.1 161.02 106.3 <2e-16 ***

Residuals 44 66.6 1.51

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we evaluate two nested linear models: The first model does not include our blocking
factor, but the second one does.

> aov.1<-aov(y~drug,data=theData)

> aov.2<-aov(y~block+drug+block:drug,data=theData)

> summary(aov.1)

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 37.1 18.539 2.173 0.126

Residuals 45 384.0 8.532
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> summary(aov.2)

Df Sum Sq Mean Sq F value Pr(>F)

block 3 129.84 43.28 6.964 0.000818 ***

drug 2 37.08 18.54 2.983 0.063294 .

block:drug 6 30.37 5.06 0.815 0.565798

Residuals 36 223.75 6.22

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that SStotal is the same for both analyses, however SSresiduals is much smaller in
the analysis that includes block. Why? Because SSresiduals in aov.1 has been partitioned
into two pieces: one due to error and another due to variation among blocks. You can
verify this statement by summing the sums-of-squares for residuals, block, and block:drug
in aov.2: the total should equal SSresidual from aov.1. The reduction in SSresiduals from
383.96 to 223.748 means that Fdrug increases from 2.1727 to 2.9828, although it still is not
significant (df = (2, 36), p = 0.063). Hence, even after accounting for the e↵ects of block
(i.e., baseline activity), we fail to reject the null hypothesis of no e↵ect of drug. The e↵ect
of block is significant, but that is not surprising.

9.2 ancova

I created the fake dependent variable, y, so that it was linearly related to baseline activity.
Our blocking variable was a qualitative factor, however, and so did not take full advantage
of the structure in the data. An alternative approach would be to include the numeric
values themselves, rather than the level of a blocking factor, into our model. This is the
approach used in the analysis of covariance. In the analysis of covariance, or ANCOVA,
SSdrug is estimated by comparing the residuals from the following models:

Y ⇠ X +A

Y ⇠ X

where X and A are the covariate and grouping variables, respectively. In other words, SSA

represents the variation in Y that is due to A after controlling for the linear association
between Y and X. The following commands perform an analysis of covariance on the
current data:

> lm.1<-lm(y~activity+drug,data=theData)

> lm.2<-lm(y~activity,data=theData)

> anova(lm.2,lm.1)
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SStotal = 421 

Analysis of Covariance (ANCOVA)

• blocking allows variation in dependent variable (Y) that is associated with blocking 
variable to be removed from residuals 

• in hyperactivity example, Y was linearly related to baseline activity 

- but blocking variable was a qualitative factor 

- did not fully take advantage of quantitative relation between Y and baseline 
locomotor activity 

• ANCOVA quantitatively models association between dependent variable and covariate 

(baseline activity) using each subject’s activity measure rather than dividing subjects 
into 4 factor groups
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Analysis of Variance Table

Model 1: y ~ activity

Model 2: y ~ activity + drug

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 278.92

2 44 239.64 2 39.286 3.6066 0.03544 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

SSdrug equals 39.286, which is significant (F = 3.6066, p = 0.035). The same results can
be obtained by using drop1, which also calculates SSactivity after controlling for the e↵ects
of drug.

> drop1(lm.1,.~.,test="F")

Single term deletions

Model:

y ~ activity + drug

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 239.64 85.181

activity 1 144.324 383.96 105.808 26.4993 5.91e-06 ***

drug 2 39.286 278.92 88.467 3.6066 0.03544 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we could simply construct an ANOVA table from the full model:

> anova(lm.1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

activity 1 142.116 142.116 26.0939 6.739e-06 ***

drug 2 39.286 19.643 3.6066 0.03544 *

Residuals 44 239.638 5.446

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R prints sequential sums of squares, so SSdrug is calculated after controlling for the linear
association between activity and the dependent variable.

4

Same result obtained with sequential sums-
of-squares ANOVA table for full model

ANCOVA

Difference between models shows SSdrug 
after controlling for the linear association 
between Y and baseline activity
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> summary(aov.2)

Df Sum Sq Mean Sq F value Pr(>F)

block 3 129.84 43.28 6.964 0.000818 ***

drug 2 37.08 18.54 2.983 0.063294 .

block:drug 6 30.37 5.06 0.815 0.565798

Residuals 36 223.75 6.22

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that SStotal is the same for both analyses, however SSresiduals is much smaller in
the analysis that includes block. Why? Because SSresiduals in aov.1 has been partitioned
into two pieces: one due to error and another due to variation among blocks. You can
verify this statement by summing the sums-of-squares for residuals, block, and block:drug
in aov.2: the total should equal SSresidual from aov.1. The reduction in SSresiduals from
383.96 to 223.748 means that Fdrug increases from 2.1727 to 2.9828, although it still is not
significant (df = (2, 36), p = 0.063). Hence, even after accounting for the e↵ects of block
(i.e., baseline activity), we fail to reject the null hypothesis of no e↵ect of drug. The e↵ect
of block is significant, but that is not surprising.

9.2 ancova

I created the fake dependent variable, y, so that it was linearly related to baseline activity.
Our blocking variable was a qualitative factor, however, and so did not take full advantage
of the structure in the data. An alternative approach would be to include the numeric
values themselves, rather than the level of a blocking factor, into our model. This is the
approach used in the analysis of covariance. In the analysis of covariance, or ANCOVA,
SSdrug is estimated by comparing the residuals from the following models:

Y ⇠ X +A

Y ⇠ X

where X and A are the covariate and grouping variables, respectively. In other words, SSA

represents the variation in Y that is due to A after controlling for the linear association
between Y and X. The following commands perform an analysis of covariance on the
current data:

> lm.1<-lm(y~activity+drug,data=theData)

> lm.2<-lm(y~activity,data=theData)

> anova(lm.2,lm.1)
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Analysis of Variance Table

Model 1: y ~ activity

Model 2: y ~ activity + drug

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 278.92

2 44 239.64 2 39.286 3.6066 0.03544 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

SSdrug equals 39.286, which is significant (F = 3.6066, p = 0.035). The same results can
be obtained by using drop1, which also calculates SSactivity after controlling for the e↵ects
of drug.

> drop1(lm.1,.~.,test="F")

Single term deletions

Model:

y ~ activity + drug

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 239.64 85.181

activity 1 144.324 383.96 105.808 26.4993 5.91e-06 ***

drug 2 39.286 278.92 88.467 3.6066 0.03544 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we could simply construct an ANOVA table from the full model:

> anova(lm.1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

activity 1 142.116 142.116 26.0939 6.739e-06 ***

drug 2 39.286 19.643 3.6066 0.03544 *

Residuals 44 239.638 5.446

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R prints sequential sums of squares, so SSdrug is calculated after controlling for the linear
association between activity and the dependent variable.
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Order of terms does matter 
but in this case we probably should put covariate first (why?)

> lm.1<-lm(y~activity+drug,data=theData)
> anova(lm.1)

Analysis of Variance Table
          Df  Sum Sq Mean Sq F value    Pr(>F)    
activity   1 142.116 142.116 26.0939 6.739e-06 ***
drug       2  39.286  19.643  3.6066   0.03544 *  
Residuals 44 239.638   5.446                      

> lm.1b<-lm(y~drug+activity,data=theData)
> anova(lm.1b)

Analysis of Variance Table

          Df  Sum Sq Mean Sq F value   Pr(>F)    
drug       2  37.078  18.539  3.4039  0.04222 *  
activity   1 144.324 144.324 26.4993 5.91e-06 ***
Residuals 44 239.638   5.446                     

> library(car)
> Anova(lm.1,type=2)

Anova Table (Type II tests)
           Sum Sq Df F value   Pr(>F)    
activity  144.324  1 26.4993 5.91e-06 ***
drug       39.286  2  3.6066  0.03544 *  
Residuals 239.638 44                     

> Anova(lm.1b,type=2)

Anova Table (Type II tests)

           Sum Sq Df F value   Pr(>F)    
drug       39.286  2  3.6066  0.03544 *  
activity  144.324  1 26.4993 5.91e-06 ***
Residuals 239.638 44         



Graphical illustration of ANCOVA

• ANCOVA computes regression 
lines for each group 

- equal slopes 

- variable intercepts 

• group effect (αj) corresponds to 
vertical shift of regression 
intercept

0 5 10 15 20

covariate (baseline activity)

Y

µ +α1

µ +α2
µ

µ +α3

X

checking linear regression

par(cex=1.5)
plot(residuals(lm.0)~fitted(lm.0),

main="Residualsvs.Fitted Values")
abline(h=0,lty=2)

plot(residuals(lm.0)~df0$x, 
main="Residuals vs. X")
abline(h=0,lty=2)

Y vs X Residuals vs Fitted Values

Residuals vs Xqqnorm(residuals)

par(cex=1.5)
plot(residuals(lm.0)~fitted(lm.0),
+    main=“Residuals vs.Fitted Values")
abline(h=0,lty=2)

plot(residuals(lm.0)~df0$x,
+    main="Residuals vs. X")
abline(h=0,lty=2)



par(cex=1.5)
plot(residuals(lm.0)~fitted(lm.0),
+    main="Residualsvs.Fitted Values")
abline(h=0,lty=2)

plot(residuals(lm.0)~df0$x,
+    main="Residuals vs. X")
abline(h=0,lty=2)

Adjusted Group Means

• point where regression line 
crosses grand mean of covariate 

• provides estimates of group 
differences after removing effects 
of covariate 

0 5 10 15 20

covariate (baseline activity)

Y

µ +α1

µ +α2
µ

µ +α3

X

̂μadj1

̂μadj2

̂μadj3

Adjusted Group Means

• point where regression line crosses 
grand mean of covariate 

• provides estimates of group 
differences after removing effects of 
covariate  

• most useful when groups differ 
considerably in terms of mean 
covariate

Computing Adjusted Means
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So, the analysis of covariance indicates that the e↵ect of drug is significant after con-
trolling for the linear association between the covariate and independent variable. Note
that the ANCOVA is more sensitive than the blocking strategy used in the previous sec-
tion. This increased sensitivity reflects the fact that the relation between the covariate and
dependent variable is linear. If the relation was nonlinear, then the blocking design may
have been more sensitive. (N.B. It is possible, however, to alter the ANCOVA model to
include a nonlinear term). Note also that the covariate in the ANCOVA model uses only
a single degree of freedom, whereas the blocking factor used two degrees of freedom.

9.2.1 graphical representation

Figure 1 is a graphical illustration of an ancova model fit to data from two treatment
groups. The two dashed lines are the best-fitting (least-squares) lines for the two sets of
data, with the constraint that the lines have the same slopes. Because we defined our
e↵ects (i.e., the ↵’s) using the sum-to-zero constraint, the intercepts for the two lines —
i.e., the value of Y when the covariate, X, is zero — are µ+↵1 and µ+↵2. In this example
there are only two groups,therefore ↵2 = �↵1 and the two intercepts are µ+↵1 and µ�↵1.

9.2.2 adjusted means

The adjusted means for the two groups correspond to the height at which the regression
lines intersect the vertical dotted line located at the overall mean of the covariate, X̄ (see
Figure 1). In other words, the adjusted means represent the means that we would expect
if all of the groups were equivalent on the covariate. The adjusted means can be calculated
for each group from the coe�cients of the ancova model:

Ȳ 0
j = µ+ �X̄ + ↵j

where � is the coe�cient for the covariate (i.e., the slope of the lines in Figure 1), µ is the
model’s intercept, and ↵j is the e↵ect for group j. The coe�cients for the model fit to the
current data are

> dummy.coef(lm.1);

Full coefficients are

(Intercept): 1.28519

activity: 0.5124572

drug: zero low high

-0.8216185 -0.4386966 1.2603150

The mean of the covariate is

5
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> summary(aov.2)

Df Sum Sq Mean Sq F value Pr(>F)

block 3 129.84 43.28 6.964 0.000818 ***

drug 2 37.08 18.54 2.983 0.063294 .

block:drug 6 30.37 5.06 0.815 0.565798

Residuals 36 223.75 6.22

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that SStotal is the same for both analyses, however SSresiduals is much smaller in
the analysis that includes block. Why? Because SSresiduals in aov.1 has been partitioned
into two pieces: one due to error and another due to variation among blocks. You can
verify this statement by summing the sums-of-squares for residuals, block, and block:drug
in aov.2: the total should equal SSresidual from aov.1. The reduction in SSresiduals from
383.96 to 223.748 means that Fdrug increases from 2.1727 to 2.9828, although it still is not
significant (df = (2, 36), p = 0.063). Hence, even after accounting for the e↵ects of block
(i.e., baseline activity), we fail to reject the null hypothesis of no e↵ect of drug. The e↵ect
of block is significant, but that is not surprising.

9.2 ancova

I created the fake dependent variable, y, so that it was linearly related to baseline activity.
Our blocking variable was a qualitative factor, however, and so did not take full advantage
of the structure in the data. An alternative approach would be to include the numeric
values themselves, rather than the level of a blocking factor, into our model. This is the
approach used in the analysis of covariance. In the analysis of covariance, or ANCOVA,
SSdrug is estimated by comparing the residuals from the following models:

Y ⇠ X +A

Y ⇠ X

where X and A are the covariate and grouping variables, respectively. In other words, SSA

represents the variation in Y that is due to A after controlling for the linear association
between Y and X. The following commands perform an analysis of covariance on the
current data:

> lm.1<-lm(y~activity+drug,data=theData)

> lm.2<-lm(y~activity,data=theData)

> anova(lm.2,lm.1)

3

dummy coefficients list the parameters for 
the lines fit to each group
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So, the analysis of covariance indicates that the e↵ect of drug is significant after con-
trolling for the linear association between the covariate and independent variable. Note
that the ANCOVA is more sensitive than the blocking strategy used in the previous sec-
tion. This increased sensitivity reflects the fact that the relation between the covariate and
dependent variable is linear. If the relation was nonlinear, then the blocking design may
have been more sensitive. (N.B. It is possible, however, to alter the ANCOVA model to
include a nonlinear term). Note also that the covariate in the ANCOVA model uses only
a single degree of freedom, whereas the blocking factor used two degrees of freedom.

9.2.1 graphical representation

Figure 1 is a graphical illustration of an ancova model fit to data from two treatment
groups. The two dashed lines are the best-fitting (least-squares) lines for the two sets of
data, with the constraint that the lines have the same slopes. Because we defined our
e↵ects (i.e., the ↵’s) using the sum-to-zero constraint, the intercepts for the two lines —
i.e., the value of Y when the covariate, X, is zero — are µ+↵1 and µ+↵2. In this example
there are only two groups,therefore ↵2 = �↵1 and the two intercepts are µ+↵1 and µ�↵1.

9.2.2 adjusted means

The adjusted means for the two groups correspond to the height at which the regression
lines intersect the vertical dotted line located at the overall mean of the covariate, X̄ (see
Figure 1). In other words, the adjusted means represent the means that we would expect
if all of the groups were equivalent on the covariate. The adjusted means can be calculated
for each group from the coe�cients of the ancova model:

Ȳ 0
j = µ+ �X̄ + ↵j

where � is the coe�cient for the covariate (i.e., the slope of the lines in Figure 1), µ is the
model’s intercept, and ↵j is the e↵ect for group j. The coe�cients for the model fit to the
current data are

> dummy.coef(lm.1);

Full coefficients are

(Intercept): 1.28519

activity: 0.5124572

drug: zero low high

-0.8216185 -0.4386966 1.2603150

The mean of the covariate is

5

covariate mean = 9.3168, so 
adjusted group means are:
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> mean(theData$activity)

[1] 9.316878

so the adjusted means for the three treatment groups are

> 1.28519 + 0.5124*9.3168-0.8216

[1] 5.237518

> 1.28519 + 0.5124*9.3168-0.4386

[1] 5.620518

> 1.28519 + 0.5124*9.3168+1.2603

[1] 7.319418

There are some advantages to using a centered covariate — a covariate that is centered
on zero. A centered variable is obtained simply by subtracting the mean value from the
original variable. The next few commands create a centered covariate activity.c and
then refit the ancova model using the new covariate.

> theData$activity.c <- theData$activity - mean(theData$activity)

> lm.3 <- lm(y~activity.c + drug,data=theData)

> drop1(lm.3,.~.,test="F")

Single term deletions

Model:

y ~ activity.c + drug

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 239.64 85.181

activity.c 1 144.324 383.96 105.808 26.4993 5.91e-06 ***

drug 2 39.286 278.92 88.467 3.6066 0.03544 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> dummy.coef(lm.3)

Full coefficients are

(Intercept): 6.059691

activity.c: 0.5124572

drug: zero low high

-0.8216185 -0.4386966 1.2603150

7

zero

low

high
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The main results are the same, however the intercept now corresponds to the point at
which the average regression line (i.e., the solid line in Figure 1) intersects with the vertical
dotted line (i.e., X = X̄). Therefore, the adjusted means can be computed by simply
adding the intercept and alpha’s:

> 6.0596-0.8216

[1] 5.238

> 6.0596-0.4386

[1] 5.621

> 6.0596+1.2603

[1] 7.3199

The values are the same (to within rounding error) of those obtained previously.
The effects package can be used to calculate the adjusted means. If you have not yet

installed the package on your computer, do so now using the following command:

> install.packages("effects")

Next, you must load the package into memory with the command library(effects)

command. Note that you only need to use this command once per R session. The adjusted
means are calculated thusly:

> library(effects)

> effect(term="drug",lm.1)

drug effect

drug

zero low high

5.238072 5.620994 7.320006

> effect(term="drug",lm.3)

drug effect

drug

zero low high

5.238072 5.620994 7.320006
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> emmeans(lm.1,specs=~drug)
 drug emmean    SE df lower.CL upper.CL
 zero   5.24 0.583 44     4.06     6.41
 low    5.62 0.583 44     4.45     6.80
 high   7.32 0.583 44     6.14     8.50



linear contrasts on adjusted means
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> df.effect <- 2;
> SS.total <- 336.68+217.15+756.33;
> (omega.2 <- df.effect*(108.57-29.09) / (SS.total+29.09) )

[1] 0.1186933

The value of !2 is 0.118, so the treatment accounts for approximately 12% of the total
variance in post-test scores in the population. Note that this definition of association
strength treats the covariate as an intrinsic factor. In other words, the value of !2 is the
proportion of variance in the dependent measure that is explained by the treatment while
ignoring the e↵ects of the covariate. An alternative measure of association strength, partial
omega squared, is the the proportion of variance that is accounted for after controlling for
the e↵ects of the covariate.

!2
partial(group) =

dfgroup(Fgroup � 1)

dfgroup(Fgroup � 1) +N

where N is the number of subjects in the experiment (Keppel and Wickens, 2004). For the
data in Table 9.7, partial omega squared is 0.154.

9.4 comparisons among group means

Tests of specific contrasts are done on adjusted means. The value of a linear contrast is
obtained in the usual way:
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where MSresiduals is taken from the full model (e.g., lm.1). The test statistic is

F =
 ̂2

s2
 ̂

which is distributed as an F variable with 1 and N � a � 1 degrees of freedom. If the
comparisons are post-hoc, you should use the Sche↵e method to control Type I error rate.
The critical value of F for a study that had a levels on the treatment variable would be
(a� 1)F↵(df1 = (a� 1), df2 = N � a� 1), where ↵ is the desired Type I error rate.

These calculations are tedious, so I have written a function for R that do them for you.
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> lm.1<-lm(y~activity+drug,data=theData)
> levels(theData$drug)
[1] "zero" "low"  "high"
> w1 <- c(-1,1,0)
> w2 <- c(-1,0,1)
> w3 <- c(0,-1,1)
> lm1.emm <- emmeans(lm.1,specs=~drug)
> contrast(lm1.emm,method=list(ZvsL=w1,ZvsH=w2,LvsH=w3))
 contrast estimate    SE df t.ratio p.value
 ZvsL        0.383 0.825 44 0.464   0.6449 
 ZvsH        2.082 0.825 44 2.523   0.0153 
 LvsH        1.699 0.825 44 2.059   0.0454 

Association strength
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9.3 strength of association

The strength of association between the treatment variable and the dependent variable —
omega squared — can be estimated with the following equation:

!2 =
dfe↵ect(MSe↵ect �MSresiduals)

SStotal +MSresiduals

I’ll illustrate this calculation using the data presented in Table 9.7 of your textbook.

> mw97<-read.table("chapter_9_table_7.dat")
> mw97[1:4,]

V1 V2 V3
1 1 18 12
2 1 16 0
3 1 16 10
4 1 15 9

> names(mw97)<-c("group","pre","post")
> mw97$treatment<-factor(mw97$group,labels=c("ssri","placebo","waitList"),ordered=FALSE)
> mw97[1:4,]

group pre post treatment
1 1 18 12 ssri
2 1 16 0 ssri
3 1 16 10 ssri
4 1 15 9 ssri

> mw97.lm.1<-lm(post~pre+treatment,data=mw97)
> drop1(mw97.lm.1,.~.,test="F")

Single term deletions

Model:
post ~ pre + treatment

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 756.33 104.82
pre 1 313.37 1069.70 113.22 10.7723 0.002937 **
treatment 2 217.15 973.48 108.39 3.7324 0.037584 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(mw97.lm.1)

Analysis of Variance Table

Response: post
Df Sum Sq Mean Sq F value Pr(>F)

pre 1 336.68 336.68 11.5739 0.002174 **
treatment 2 217.15 108.57 3.7324 0.037584 *
Residuals 26 756.33 29.09
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(ignores covariate)

(removes variation due to covariate)

> require(effectsize)
> mw97.aov.01 <- aov(post~pre+treatment,data=mw97)
> omega_squared(mw97.aov.01,partial=F)
Parameter | Omega2 |       90% CI
---------------------------------
pre       |   0.23 | [0.04, 0.44]
treatment |   0.12 | [0.00, 0.30]

> omega_squared(mw97.aov.01,partial=T)
Parameter | Omega2 (partial) |       90% CI
-------------------------------------------
pre       |             0.26 | [0.05, 0.47]
treatment |             0.15 | [0.00, 0.34]

Homogeneity of slopes assumption

• ANCOVA assumes that slope of 
regression line is the same in each group 

- implies that there is no covariate x 
group interaction 

• if valid, then group differences are 
independent of covariate 

• if not valid, then group differences vary 
with covariate
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9.2.3 homogeneity of slopes assumption

The ancova model fits regression lines to each group with the constraint that the slopes
of the lines are equal. This constraint is equivalent to assuming that there is no interac-
tion between the covariate and the treatment variable. If the assumption is valid, then
the di↵erences between groups — the vertical distances between the regression lines —
are constant for all values of the covariate. However, if there is an interaction, then the
di↵erences between groups will depend on the value of the covariate. In this situation, it
may not make sense to talk about the main e↵ect of the treatment variable. Therefore, it
is important to test the validity of the homogeneity of slopes assumption by comparing the
goodness of fit obtained by models that do and do not have an interaction term:

> lm.4 <- lm(y~activity.c + drug + activity.c:drug,data=theData)

> anova(lm.3,lm.4)

Analysis of Variance Table

Model 1: y ~ activity.c + drug

Model 2: y ~ activity.c + drug + activity.c:drug

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44 239.64

2 42 225.34 2 14.298 1.3324 0.2748

Alternatively, we can simply list the anova table for the full model:

> anova(lm.4)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

activity.c 1 142.116 142.116 26.4881 6.604e-06 ***

drug 2 39.286 19.643 3.6611 0.03422 *

activity.c:drug 2 14.298 7.149 1.3324 0.27476

Residuals 42 225.340 5.365

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

SSinteraction = 14.298, which is not significant (F = 1.332, df = (2, 42), p = 0.274).
Therefore, the assumption appears to be valid for these data.
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9.6 An alternative to ANCOVA

You might have wondered why an ANCOVA was necessary for the data presented here.
Why not just conduct an ANOVA on the di↵erence scores computed subtracting pre- and
post-treatment activity levels? I conduct that analysis here:

> theData$diff <- theData$y - theData$activity;

> diff.lm.1 <- lm(diff~drug,data=theData)

> anova(diff.lm.1);

Analysis of Variance Table

Response: diff

Df Sum Sq Mean Sq F value Pr(>F)

drug 2 41.46 20.7318 2.5196 0.09179 .

Residuals 45 370.27 8.2282

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The e↵ect of group is not significant. Obviously, this analysis was less sensitive than
the ANCOVA. Why? The reason is that the di↵erence score approach is based on a more
restrictive model than the one used in ANCOVA. The model is

Yij �Xij = µ+ ↵j + ✏ij

which can be re-written as
Yij = µ+ ↵j +Xij + ✏ij

This model is similar to the one used in ANCOVA, except that the slope of the linear
relation between Y and X is assumed to be one. When the linear relation does have a
slope of one (i.e., � = 1), then an ANOVA on di↵erence scroes will yield the same results
as an ANCOVA. When � 6= 1, ANCOVA will have greater sensitivity.
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• ANOVA on difference scores is equivalent to 
ANCOVA with slope fixed at 1.0 

• When slope ≠ 1, then ANCOVA provides 
better fit (lower MS-residuals)
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